219 research outputs found
(16) Psyche: A mesosiderite-like asteroid?
Asteroid (16) Psyche is the target of the NASA Psyche mission. It is
considered one of the few main-belt bodies that could be an exposed
proto-planetary metallic core and that would thus be related to iron
meteorites. Such an association is however challenged by both its near- and
mid-infrared spectral properties and the reported estimates of its density.
Here, we aim to refine the density of (16) Psyche to set further constraints on
its bulk composition and determine its potential meteoritic analog.
We observed (16) Psyche with ESO VLT/SPHERE/ZIMPOL as part of our large
program (ID 199.C-0074). We used the high angular resolution of these
observations to refine Psyche's three-dimensional (3D) shape model and
subsequently its density when combined with the most recent mass estimates. In
addition, we searched for potential companions around the asteroid. We derived
a bulk density of 3.99\,\,0.26\,gcm for Psyche. While such
density is incompatible at the 3-sigma level with any iron meteorites
(7.8\,gcm), it appears fully consistent with that of
stony-iron meteorites such as mesosiderites (density
4.25\,cm). In addition, we found no satellite in our images
and set an upper limit on the diameter of any non-detected satellite of
1460\,\,200}\,m at 150\,km from Psyche (0.2\%\,\,R, the
Hill radius) and 800\,\,200\,m at 2,000\,km (3\%\,\,).
Considering that the visible and near-infrared spectral properties of
mesosiderites are similar to those of Psyche, there is merit to a
long-published initial hypothesis that Psyche could be a plausible candidate
parent body for mesosiderites.Comment: 16 page
Collapse of the N=28 shell closure in Si
The energies of the excited states in very neutron-rich Si and
P have been measured using in-beam -ray spectroscopy from the
fragmentation of secondary beams of S at 39 A.MeV. The low 2
energy of Si, 770(19) keV, together with the level schemes of
P provide evidence for the disappearance of the Z=14 and N=28
spherical shell closures, which is ascribed mainly to the action of
proton-neutron tensor forces. New shell model calculations indicate that
Si is best described as a well deformed oblate rotor.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. let
Absorbing photonic crystals for thin film photovoltaics
The absorption of thin hydrogenated amorphous silicon layers can be
efficiently enhanced through a controlled periodic patterning. Light is trapped
through coupling with photonic Bloch modes of the periodic structures, which
act as an absorbing planar photonic crystal. We theoretically demonstrate this
absorption enhancement through one or two dimensional patterning, and show the
experimental feasibility through large area holographic patterning. Numerical
simulations show over 50% absorption enhancement over the part of the solar
spectrum comprised between 380 and 750nm. It is experimentally confirmed by
optical measurements performed on planar photonic crystals fabricated by laser
holography and reactive ion etching.Comment: 6 pages. SPIE Photonics Europe pape
Nucleic Acids Res
In plants, the voltage-dependent anion-selective channel (VDAC) is a major component of a pathway involved in transfer RNA (tRNA) translocation through the mitochondrial outer membrane. However, the way in which VDAC proteins interact with tRNAs is still unknown. Potato mitochondria contain two major mitochondrial VDAC proteins, VDAC34 and VDAC36. These two proteins, composed of a N-terminal α-helix and of 19 ÎČ-strands forming a ÎČ-barrel structure, share 75% sequence identity. Here, using both northwestern and gel shift experiments, we report that these two proteins interact differentially with nucleic acids. VDAC34 binds more efficiently with tRNAs or other nucleic acids than VDAC36. To further identify specific features and critical amino acids required for tRNA binding, 21 VDAC34 mutants were constructed and analyzed by northwestern. This allowed us to show that the ÎČ-barrel structure of VDAC34 and the first 50 amino acids that contain the α-helix are essential for RNA binding. Altogether the work shows that during evolution, plant mitochondrial VDAC proteins have diverged so as to interact differentially with nucleic acids, and this may reflect their involvement in various specialized biological functions
A tryptophan-rich peptide acts as a transcription activation domain
<p>Abstract</p> <p>Background</p> <p>Eukaryotic transcription activators normally consist of a sequence-specific DNA-binding domain (DBD) and a transcription activation domain (AD). While many sequence patterns and motifs have been defined for DBDs, ADs do not share easily recognizable motifs or structures.</p> <p>Results</p> <p>We report herein that the N-terminal domain of yeast valyl-tRNA synthetase can function as an AD when fused to a DNA-binding protein, LexA, and turn on reporter genes with distinct LexA-responsive promoters. The transcriptional activity was mainly attributed to a five-residue peptide, WYDWW, near the C-terminus of the N domain. Remarkably, the pentapeptide <it>per se </it>retained much of the transcriptional activity. Mutations which substituted tryptophan residues for both of the non-tryptophan residues in the pentapeptide (resulting in W<sub>5</sub>) significantly enhanced its activity (~1.8-fold), while mutations which substituted aromatic residues with alanine residues severely impaired its activity. Accordingly, a much more active peptide, pentatryptophan (W<sub>7</sub>), was produced, which elicited ~3-fold higher activity than that of the native pentapeptide and the N domain. Further study indicated that W<sub>7 </sub>mediates transcription activation through interacting with the general transcription factor, TFIIB.</p> <p>Conclusions</p> <p>Since W<sub>7 </sub>shares no sequence homology or features with any known transcription activators, it may represent a novel class of AD.</p
The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the âŒ120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella
High-speed optical mapping of heart and brain voltage activities in zebrafish larvae exposed to environmental contaminants
Data availability: Data will be made available on request.Supplementary data are available online at https://www.sciencedirect.com/science/article/pii/S235218642300192X?via%3Dihub#appSB .Copyright © 2023 The Author(s). Environmental contaminants represent a poorly understood ecotoxicological and health risk. Here, we advanced a high-speed optical mapping (OM) technique to non-invasively track voltage dynamics in living zebrafish larvaeâs heart and brain and investigate the effects of selected pesticides.
OM allowed high resolution (
17x) and fast acquisition (100 to 200 frames/s) of the voltage signal generated in the heart and brain after immersion of the zebrafish larvae in a voltage-sensitive dye. First, we used varying temperatures (20 °C to 25 °C) to test the adequacy of OM in capturing cardiac and brain voltage changes. Then, we tested the effects of glyphosate or a selected pesticide cocktail (2 to 120 h post-fertilization), accounting for their environmental thresholds and mimicking high-level exposure. Glyphosate (0.1 and 1000
g/L) and the pesticide cocktail (0.1 and 10
g/L) did not alter cardiac activity, except for a trend increase in heart rate variability at high glyphosate dose. Fourier transform (FT) analyses indicated that glyphosate reduced the abundance of low-amplitude voltage activities in the brain at the target low-frequency range of 0.2â15 Hz. The anatomical fragmentation of the brain into four regions, right and left diencephalon (RD and LD) and right and left optic tectum (ROT and LOT), confirmed the impact of glyphosate on the larvae brain and revealed a specific adaptation to the pesticide cocktail in the RD and ROT regions.
In summary, OM captured heart and brain voltage changes in zebrafish larvae, with discrete patterns of brain depolarization in the presence of specific water contaminants. Here we discuss the relevance of these findings to ecotoxicology and exposome research.This work was supported by ANR-Hepatobrain and Epidimicmac ANSES to NM, and âSoutien Ă la Recherche 2021â of the University of Montpellier and Fondation pour la Recherche sur le Cerveau, France: Espoir en tĂȘte 2022/23 to AGT. Partially funded by OptoFish ANSES, ANR-EpiCatcher, ANR/Era-Net Neu-Vasc to NM and the Fondation pour la Recherche MĂ©dicale, France (FRM, grant DPC2017 to M.E.M)
In-beam spectroscopic studies of S nucleus
The structure of the S nucleus has been studied at GANIL through the
one proton knock-out reaction from a Cl secondary beam at 42
AMeV. The rays following the de-excitation of S were
detected in flight using the 70 BaF detectors of the Ch\^{a}teau de
Cristal array. An exhaustive -coincidence analysis allowed an
unambiguous construction of the level scheme up to an excitation energy of 3301
keV. The existence of the spherical 2 state is confirmed and three new
-ray transitions connecting the prolate deformed 2 level were
observed. Comparison of the experimental results to shell model calculations
further supports a prolate and spherical shape coexistence with a large mixing
of states built on the ground state band in S.Comment: 6 pages, 5 figures, accepted for publication in Physical Review
- âŠ