90 research outputs found
Comparison of Multilocus Sequence Analysis and Virulence Genotyping of Escherichia coli from Live Birds, Retail Poultry Meat, and Human Extraintestinal Infection
the Veterinary Preventive Medicine, Epidemiology, and Public Health Commons The complete bibliographic information for this item can be found a
Infections with Avian Pathogenic and Fecal Escherichia coli Strains Display Similar Lung Histopathology and Macrophage Apoptosis
The purpose of this study was to compare histopathological changes in the lungs of chickens infected with avian
pathogenic (APEC) and avian fecal (Afecal) Escherichia coli strains, and to analyze how the interaction of the bacteria with
avian macrophages relates to the outcome of the infection. Chickens were infected intratracheally with three APEC strains,
MT78, IMT5155, and UEL17, and one non-pathogenic Afecal strain, IMT5104. The pathogenicity of the strains was assessed by
isolating bacteria from lungs, kidneys, and spleens at 24 h post-infection (p.i.). Lungs were examined for histopathological
changes at 12, 18, and 24 h p.i. Serial lung sections were stained with hematoxylin and eosin (HE), terminal deoxynucleotidyl
dUTP nick end labeling (TUNEL) for detection of apoptotic cells, and an anti-O2 antibody for detection of MT78 and
IMT5155. UEL17 and IMT5104 did not cause systemic infections and the extents of lung colonization were two orders of
magnitude lower than for the septicemic strains MT78 and IMT5155, yet all four strains caused the same extent of
inflammation in the lungs. The inflammation was localized; there were some congested areas next to unaffected areas. Only
the inflamed regions became labeled with anti-O2 antibody. TUNEL labeling revealed the presence of apoptotic cells at 12 h
p.i in the inflamed regions only, and before any necrotic foci could be seen. The TUNEL-positive cells were very likely dying
heterophils, as evidenced by the purulent inflammation. Some of the dying cells observed in avian lungs in situ may also be
macrophages, since all four avian E. coli induced caspase 3/7 activation in monolayers of HD11 avian macrophages. In
summary, both pathogenic and non-pathogenic fecal strains of avian E. coli produce focal infections in the avian lung, and
these are accompanied by inflammation and cell death in the infected areas
Avian Colibacillosis and Salmonellosis: A Closer Look at Epidemiology, Pathogenesis, Diagnosis, Control and Public Health Concerns
Avian colibacillosis and salmonellosis are considered to be the major bacterial diseases in the poultry industry world-wide. Colibacillosis and salmonellosis are the most common avian diseases that are communicable to humans. This article provides the vital information on the epidemiology, pathogenesis, diagnosis, control and public health concerns of avian colibacillosis and salmonellosis. A better understanding of the information addressed in this review article will assist the poultry researchers and the poultry industry in continuing to make progress in reducing and eliminating avian colibacillosis and salmonellosis from the poultry flocks, thereby reducing potential hazards to the public health posed by these bacterial diseases
Consequences of concurrent Ascaridia galli and Escherichia coli infections in chickens
Three experiments were carried out to examine the consequences of concurrent infections with Ascaridia galli and Escherichia coli in chickens raised for table egg production. Characteristic pathological lesions including airsacculitis, peritonitis and/or polyserositis were seen in all groups infected with E. coli. Furthermore, a trend for increased mortality rates was observed in groups infected with both organisms which, however, could not be confirmed statistically. The mean worm burden was significantly lower in combined infection groups compared to groups infected only with A. galli. It was also shown that combined infections of E. coli and A. galli had an added significant negative impact on weight gain
The B subunits of cholera and Escherichia coli heat-labile toxins enhance the immune responses in mice orally immunised with a recombinant live P-fimbrial vaccine for avian pathogenic E. coli
This study aimed to investigate the adjuvant effect of recombinant attenuated Salmonella expressing cholera toxin B subunit (CTB) and Escherichia coli heat-labile enterotoxin B subunit (LTB) for the P-fimbriae subunit-based vaccine of avian pathogenic E. coli (APEC) in a murine model. The PapA-specific sIgA and IgG responses were significantly enhanced after immunisation with the Salmonella-PapA vaccine in the presence of CTB or LTB. The group immunised with the Salmonella-LTB strain promoted Th1-type immunity, whereas that immunised with the Salmonella-CTB strain produced Th2-type immunity. We concluded that both Salmonella-CTB and -LTB strains can enhance the immune response to PapA, and that the LTB strain may be a more effective adjuvant for APEC vaccination, which requires higher Th1-type immunity for protection. Thus, our findings provide evidence that immunisation with an adjuvant, LTB, is one of the strategies of developing effective vaccines against P-fimbriated APEC
Effect of Fructooligosaccharide Metabolism on Chicken Colonization by an Extra-Intestinal Pathogenic Escherichia coli Strain
Extra-intestinal pathogenic Escherichia coli (ExPEC) strains cause many diseases in humans and animals. While remaining asymptomatic, they can colonize the intestine for subsequent extra-intestinal infection and dissemination in the environment. We have previously identified the fos locus, a gene cluster within a pathogenicity island of the avian ExPEC strain BEN2908, involved in the metabolism of short-chain fructooligosaccharides (scFOS). It is assumed that these sugars are metabolized by the probiotic bacteria of the microbiota present in the intestine, leading to a decrease in the pathogenic bacterial population. However, we have previously shown that scFOS metabolism helps BEN2908 to colonize the intestine, its reservoir. As the fos locus is located on a pathogenicity island, one aim of this study was to investigate a possible role of this locus in the virulence of the strain for chicken. We thus analysed fos gene expression in extracts of target organs of avian colibacillosis and performed a virulence assay in chickens. Moreover, in order to understand the involvement of the fos locus in intestinal colonization, we monitored the expression of fos genes and their implication in the growth ability of the strain in intestinal extracts of chicken. We also performed intestinal colonization assays in axenic and Specific Pathogen-Free (SPF) chickens. We demonstrated that the fos locus is not involved in the virulence of BEN2908 for chickens and is strongly involved in axenic chicken cecal colonization both in vitro and in vivo. However, even if the presence of a microbiota does not inhibit the growth advantage of BEN2908 in ceca in vitro, overall, growth of the strain is not favoured in the ceca of SPF chickens. These findings indicate that scFOS metabolism by an ExPEC strain can contribute to its fitness in ceca but this benefit is fully dependent on the bacteria present in the microbiota
- …