269 research outputs found

    The motion of vortex layers and vortex filaments

    Get PDF
    Imperial Users onl

    Global visualization and quantification of compressible vortex loops

    Get PDF
    The physics of compressible vortex loops generated due to the rolling up of the shear layer upon the diffraction of a shock wave from a shock tube is far from being understood, especially when shock-vortex interactions are involved. This is mainly due to the lack of global quantitative data available which characterizes the flow. The present study involves the usage of the PIV technique to characterize the velocity and vorticity of compressible vortex loops formed at incident shock Mach numbers ofM=1.54 and1.66. Another perk of the PIV technique over purely qualitative methods, which has been demonstrated in the current study, is that at the same time the results also provide a clear image of the various flow features. Techniques such as schlieren and shadowgraph rely on density gradients present in the flow and fail to capture regions of the flow influenced by the primary flow structure which would have relatively lower pressure and density. Various vortex loops, namely, square, elliptic and circular, were generated using different shape adaptors fitted to the end of the shock tube. The formation of a coaxial vortex loop with opposite circulation along with the generation of a third stronger vortex loop ahead of the primary with same circulation direction are of the interesting findings of the current study

    Band alignments at Ga<sub>2</sub>O<sub>3</sub> heterojunction interfaces with Si and Ge

    Get PDF
    Amorphous Ga2O3 thin films were deposited on p-type (111) and (100) surfaces of silicon and (100) germanium by atomic layer deposition (ALD). X-ray photoelectron spectroscopy (XPS) was used to investigate the band alignments at the interfaces using the Kraut Method. The valence band offsets were determined to be 3.49± 0.08 eV and 3.47± 0.08 eV with Si(111) and Si(100) respectively and 3.51eV± 0.08 eV with Ge(100). Inverse photoemission spectroscopy (IPES) was used to investigate the conduction band of a thick Ga2O3 film and the band gap of the film was determined to be 4.63±0.14 eV. The conduction band offsets were found to be 0.03 eV and 0.05eV with Si(111) and Si(100) respectively, and 0.45eV with Ge(100). The results indicate that the heterojunctions of Ga2O3 with Si(100), Si(111) and Ge(100) are all type I heterojunctions

    Hafnia and alumina on sulphur passivated germanium

    Get PDF
    In this work hafnia (HfO2) and alumina (Al2O3) films were deposited on germanium, using either water or oxygen plasma as the oxidant, by atomic layer deposition at 250 °C with and without sulphur passivation of the substrate. X-ray photoelectron spectroscopy was carried out to investigate the interface between both HfO2 and Al2O3 films and germanium. The results show that for hafnia and alumina deposited with water on pre-sulphur treated germanium there is negligible GeOx formation when compared to films grown using oxygen plasma. The results support the case for sulphur passivation of the interface

    True nature of an archetypal self-assembly system: Mobile Au-thiolate species on Au(111)

    Get PDF
    Alkanethiol self-assembled monolayer (SAM) phases on Au(111) have been assumed to involve direct S head group bonding to the substrate. Using x-ray standing wave experiments, we show the thiolate actually bonds to gold adatoms; self-organization in these archetypal SAM systems must therefore be governed by the movement of these Au-S-R moieties on the surface between two distinct local hollow sites on the surface. The results of recent ab initio total energy calculations provide strong support for this description, and a rationale for the implied significant molecular mobility in these systems

    An integration of attachment theory and reinforcement sensitivity theory

    Get PDF
    This thesis examined how relationship experiences shape people\u27s sensitivity to detect threat and reward in romantic relationships and substance use scenarios. Findings indicated that anxious individuals experienced difficulty in distinguishing between threat and reward. In contrast, avoidant individuals were quick to detect threat either fleeing or confronting the problem aggressively

    Role of geometrical cues in bone marrow-derived mesenchymal stem cell survival, growth and osteogenic differentiation

    Get PDF
    Mesenchymal stem cells play a vital role in bone formation process by differentiating into osteoblasts, in a tissue that offers not a flat but a discontinuous three-dimensional (3D) topography in vivo. In order to understand how geometry may be affecting mesenchymal stem cells, this study explored the influence of 3D geometry on mesenchymal stem cell-fate by comparing cell growth, viability and osteogenic potential using monolayer (two-dimensional, 2D) with microsphere (3D) culture systems normalised to surface area. The results suggested lower cell viability and reduced cell growth in 3D. Alkaline phosphatase activity was higher in 3D; however, both collagen and mineral deposition appeared significantly lower in 3D, even after osteogenic supplementation. Also, there were signs of patchy mineralisation in 3D with or without osteogenic supplementation as early as day 7. These results suggest that the convex surfaces on microspheres and inter-particulate porosity may have led to variable cell morphology and fate within the 3D culture. This study provides deeper insights into geometrical regulation of mesenchymal stem cell responses applicable for bone tissue engineering

    Ge interface engineering using ultra-thin La2O3 and Y2O3 films: A study into the effect of deposition temperature

    Get PDF
    A study into the optimal deposition temperature for ultra-thin La2O3/Ge and Y2O3/Ge gate stacks has been conducted in this paper with the aim to tailor the interfacial layer for effective passivation of the Ge interface. A detailed comparison between the two lanthanide oxides (La2O3 and Y2O3) in terms of band line-up, interfacial features, and reactivity to Ge using medium energy ion scattering, vacuum ultra-violet variable angle spectroscopic ellipsometry (VUV-VASE), X-ray photoelectron spectroscopy, and X-ray diffraction is shown. La2O3 has been found to be more reactive to Ge than Y2O3, forming LaGeOx and a Ge sub-oxide at the interface for all deposition temperature studied, in the range from 44 °C to 400 °C. In contrast, Y2O3/Ge deposited at 400 °C allows for an ultra-thin GeO2 layer at the interface, which can be eliminated during annealing at temperatures higher than 525 °C leaving a pristine YGeOx/Ge interface. The Y2O3/Ge gate stack deposited at lower temperature shows a sub-band gap absorption feature fitted to an Urbach tail of energy 1.1 eV. The latter correlates to a sub-stoichiometric germanium oxide layer at the interface. The optical band gap for the Y2O3/Ge stacks has been estimated to be 5.7 ± 0.1 eV from Tauc-Lorentz modelling of VUV-VASE experimental data. For the optimal deposition temperature (400 °C), the Y2O3/Ge stack exhibits a higher conduction band offset (>2.3 eV) than the La2O3/Ge (∼2 eV), has a larger band gap (by about 0.3 eV), a germanium sub-oxide free interface, and leakage current (∼10−7 A/cm2 at 1 V) five orders of magnitude lower than the respective La2O3/Ge stack. Our study strongly points to the superiority of the Y2O3/Ge system for germanium interface engineering to achieve high performance Ge Complementary Metal Oxide Semiconductor technology
    • …
    corecore