
THE MOTION OF VORTEX LAYERS AND VORTEX FILAMENTS 

by 

Manhar Ramji Dhanak 

A Thesis submitted for the Degree of Doctor 

of Philosophy of the University of London 

Department of Mathematics 

Imperial College of Science and Technology 

London 1980 



2 

ABSTRACT 

The work in this thesis is devoted to the study of the motion of 

vortex layers and vortex filaments in fluids which are regarded as 

either inviscid or as having a small viscosity. 

The first part of the thesis is concerned with the motion and 

stability of vortex layers in two dimensions. The growth of waves on 

a vortex sheet may be suppressed if the sheet is being stretched. The 

influence on this result of regarding the vortex sheet as having a 

finite thickness is examined. Also in Part I, the generalisation of 

Birkhoff's equation of motion of a vortex sheet to a thin layer of 

arbitrary vorticity distribution is considered. Hence an equation of 

motion of an instantaneously created vortex sheet undergoing viscous 

diffusion is obtained and is used to study growth of long waves on a 

Rayleigh layer. Higher order approximations to the equation of motion 

of a layer of uniform vorticity in an inviscid fluid are obtained. 

The second part of the thesis deals with the motion of vortex 

filaments in three-dimensional flow. Two problems are considered. 

Firstly, the evolution of a vortex ring of elliptic configuration 

is determined numerically and the results are compared with those of 

quantitative experiments performed with smoke rings. The calculations 

suggest a break up of vortex rings of large initial eccentricities and 

this is verified by the experiments. Secondly, the interaction between 

an infinitely long straight vortex filament and an approaching rigid 

sphere is considered. The evolution of the vortex when the sphere is 

sufficiently far away from it is determined from linear theory and is 

followed up numerically for subsequent times. 
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CHAPTER I: GENERAL INTRODUCTION 

In recent years a considerable interest has been shown in the 

motion and behaviour of vortices. The interest has in part been 

motivated by the concern over the persistence of trailing vortices 

behind large aircraft which constitute a hazard to other aircraft. 

Thus an understanding of the formation and properties of the trailing 

vortex system behind an aircraft is needed and has led to several 

studies of vortex formation and vortex interactions. A recent survey 

of such studies has been given by Saffman & Baker (1979). 

Many unsteady fluid flows of interest, of the kind mentioned above, 

are characterized by low viscosity and the presence of distinct regions 

of high vorticity imbedded in an otherwise irrotational flow. Jets, 

wakes, free-shear layers and vortex rings are a few more examples of 

such flows. The usual source of vorticity in flows of this type is 

through viscous interaction with a solid boundary and subsequent 

ejection from the boundary in the form of a shear-layer or vortex 

sheet. Generally, this sheet may break up through Kelvin-Helmholtz 

instability or evolve in unsteady manner and roll up into a vortex 

filament. In any case, the vorticity away from the boundary is confined 

to narrow regions in the form of vortex layers or vortex filaments. 

It is customary in such flows to neglect viscosity and replace 

the vortex layer or filament by a vortex sheet or line vortex respectively 

and calculate the induced flow kinematically using the Biot-Savart 

law. However, before this can be done, the position and shape of the 

layer or filament has to be determined. 

The present study is concerned with the motion of vortex layers 

and vortex filaments. Throughout, the fluid is regarded as homogeneous 

and incompressible. It is also regarded as either inviscid or as 

having a small viscosity.. 
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The work presented here is divided into two parts. Chapters 2-4 

deal with the motion and stability of vortex layers while in 

Chapters 5-7, the motion of vortex filaments is considered. 

The theme of the work on vortex layers in Part I has been to 

examine the effect on the motion and stability of a vortex sheet if it 

is regarded as having a finite thickness, in flow situations where the 

corresponding results for a sheet of zero thickness are known. A survey 

of calculations of the motion of a vortex sheet of zero thickness has 

been given by Fink & Soh (1974). 

In Chapter 2, the effect of finite thickness on the stability of 

a stretching vortex sheet is examined by considering a simple flow 

model. 

In Chapter 3, the generalisation of the equation of motion of a 

vortex sheet, as given by Birkhoff (1962), to a thin layer of arbitrary 

vorticity distribution is considered (in the case of a layer of uniform 

vorticity this has been achieved by Moore (1978)). Hence an equation 

of motion, valid for small times, of an instantaneously created vortex 

sheet undergoing viscous diffusion is obtained and used to study growth 

of long waves on a Rayleigh layer. 

Higher order approximations to the equation of motion of a thin 

layer are obtained in Chapter 4 in the case of a uniform vorticity 

distribution in the layer. Hence an improvement to Moore's equation 

is obtained. 

The motion of vortex filaments in Part II is studied using the 

'cut-off' approximation of Crow (1970) for the velocity at a vortex. 

This has been successfully used before by, among others, Moore (1972) 

and Leonard (1974) and has been rigorously justified by Moore & 

Saffman (1972). The equation of motion of the filament based on this 

approximation is discussed in Chapter 5. 
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The equation is used in Chapter 6 to numerically follow the 

evolution of an elliptic vortex ring. Calculations are presented for 

various eccentricities of the initial ellipse. The results are 

compared with those from quantitative experiments in which the vortex 

rings were produced by puffing air through elliptical orifices. 

In Chapter 7, the evolution of an infinitely long straight vortex 

filament in the presence of an approaching rigid sphere is considered. 

The shape of the vortex filament when the sphere is sufficiently far 

away from the vortex is determined approximately using linear theory. 

The subsequent evolution of the vortex from this shape is followed 

numerically. The interaction between a point source and a vortex is 

also discussed using the linearized form of the equation given in 

Chapter 5. 

1' 



PART I: MOTION OF VORTEX LAYERS IN 

TWO-DIMENSIONS  

10 
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CHAPTER 2: THE STABILITY OF AN EXPANDING CIRCULAR VORTEX  
LAYER 

§1 Introduction 

It is well known that a plane uniform vortex sheet of constant 

strength in an inviscid fluid is unstable; the strength of the vortex 

sheet is the discontinuity of tangential velocity across the sheet. 

Small disturbances on the vortex sheet grow exponentially with time, 

the ones with the shortest wavelength growing the fastest. 

This violent instability can be significantly suppressed in real 

fluids by two possible mechanisms. One is viscous diffusion which 

tends to thicken the vortex sheet. The effect of finite thickness on 

the stability of a vortex sheet was examined by Lord Rayleigh (1896) 

who considered the growth of infinitesimal perturbations on a straight 

layer of uniform vorticity w in an inviscid fluid. He showed that 

disturbances of wavenumber k grow like exp(at) where 

2 
Q2  = 4 (exp(-2kb) - (1-kb)2) (2.1.1) 

Here b is the thickness of the layer. The right hand side of (2.1.1) 

is negative if kb > (kb)c  = 1.28. Thus short waves of wavelength 

A = k such that A < ac  = 4.85b are not amplified. For A > Ac  waves 

grow exponentially. 

In unsteady flows such as a rolling up vortex sheet created at 

sharp leading and trailing edges of lifting surfaces, the vortex sheet 

may undergo stretching. Stretching implies that the strength of a 

vortex sheet decreases with time; if the sheet is thought of as a 

rectilinear distribution of discrete vortices of constant strength, so 

that the strength of the sheet is proportional to their number density, 
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then stretching implies separation of these vortices. Stretching 

of the vortex sheet has been shown by Moore & Griffith-Jones (1974) 

to have a stabilising effect on the vortex sheet. They examined the 

stability of a uniform circular vortex sheet, which is undergoing 

stretching, to small disturbances in the plane of flow. The sheet is 

considered to be stable if all disturbances which are bounded initially 

remain bounded for all time. It is shown that the sheet remains stable 

provided the stretching rate is faster than (time)- . The results are 

consistent with Saffman's (1974) heuristic treatment of the effect of 

stretching on the stability of a vortex sheet. Later, Moore (1976) 

examined the stability to two-dimensional disturbances of an arbitrary 

vortex sheet and considered the effect of non-uniformity of the vortex 

sheet. 

Zakharov (1977), unaware of the work of Moore and Griffith-Jones, 

re-examined the stability of a uniform circular vortex sheet which is 

undergoing stretching, for a particular stretching rate. He found 

that a point vortex introduced at the centre of the expanding vortex 

sheet has a stabilising influence on the vortex sheet. 

Moore & Griffith-Jones, in their investigation, showed that even 

though the vortex sheet was stable for sufficiently fast stretching 

rate, the amplitude of short-wave disturbances was greatly amplified. 

However, it is possible that in a real fluid3 viscosity, by thickening 

the vortex sheet, damps out these short waves. 

The object of this chapter is to examine the effect of finite 

thickness on the stability of a stretching vortex sheet in an inviscid 

fluid. This is achieved by studying the flow model of Moore & Griffith-

Jones with the vortex sheet replaced by a uniform vortex layer. Thus 

a uniform circular cylindrical layer of constant vorticity is considered. 

The layer undergoes a radial expansion which is driven by a concentric 
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line source. Since the total amount of vorticity in the layer is 

constant, the cross-sectional area of cylindrical vortex layer must 

remain constant so that the thickness of the layer decreases with 

increase in radius. 

The surfaces of the vortex layer are perturbed by small disturbances 

which do not vary in a direction parallel to the vortex lines so that 

the vortex lines are not distorted. 

In §2, the equations governing the disturbances are obtained. It 

has not been possible to obtain exact solutions of these equations and 

in §3 a short-wave approximation is developed in the case when the 

thickness of the layer is comparable with the wavelength of the 

disturbances. 

It is interesting to note certain observations made by Crow & 

Barker (1977) in an experiment to generate a vortex pair. For each 

vortex, they observed amplified disturbances on the rolling-up vortex 

sheet; the disturbances originate at the sharp edge where the sheet is 

created and grow on the outer portions of the vortex spiral. It was 

found that the wavelength of the disturbance was 2.6d where 

d = 4(vt)1/2. If the vortex sheet at the sharp edge was thickened, the 

appearance of the instability was delayed and the wavelength of the 

disturbance was 4.76. That this effect may be partly due to the 

stretching which the vortex sheet undergoes is revealed by a certain 

feature of the results obtained in §3 and is discussed there. 
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§2 Basic flow and stability analysis  

Plane polar coordinates (r,8) with r = 0 at the centre of the 

expanding layer and 8 pointing in a fixed direction are chosen. At 

time t, let R(t), R+(t) denote the inner and outer radii of the layer, 

respectively. If 	andd ū8  are the radial and azimuthal velocity 

components, the equations to be satisfied by the unperturbed flow at 

time t are 

 

1 a — 
= r Dr (ru  ) 

R(t) < r < R+(t) 

0 	otherwise 

r00. 

(2.2.1) 

and (ru ) = 0 
ar 	r 

 

where w is the constant vorticity in the layer, so that if r is the 

total circulation 

r = TrwA 	 (2.2.2) 

where A = R+(t) - R2(t). Thus the area TrA of the layer is conserved. 

The expansion of the layer can be considered to be due to a line source 

of variable strength at the origin. 

The unperturbed velocity field is then given by 

AR 	R+R+  
u = — - 
r 	r 	r 

0 	 r < R(t) 
	

(2.2.3) 

u8  = 	r(r2-R2)/2TrAr 	R(t) < r < R+(t) 

17/27rr 	r > R+(t) 

where a dot denotes differentiation with respect to time. There is, of 

course, no discontinuity in velocity at the two surfaces of the layer. 
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The disturbed shapes of inner and outer surfaces of the vortex 

layer are taken to be of the form which preserves the area of the 

vortex layer, viz., 

✓ - R(8,t) = R(t)(1 + c(t)eis9) 

✓ - R+(6 	= R+(t)(1 + u(t)eis9) 
(2.2.4) 

respectively. Here, c and u  are complex functions with leldpi « 1 

and s is a positive integer whose values distinguish between the different 

modes; a general disturbance can be represented by a sum of these modes. 

As the vorticity is uniform in the layer, the vorticity at any 

point within the layer remains unchanged and the perturbation velocity 

field is irrotational within the layer, the disturbance merely shifting 

the vortex lines in the layer. Hence the perturbation velocity field 

is irrotational everywhere and can be expressed by a velocity potential 

of the form 

al(t)r 
seisA 	r > R+  

• = 	a2(t)r
-seisG 

+ a3(t )r se
is9 	R < r < R+  

a4
(t)rseise 	

r < R 

(2.2.5) 

where a. (i = 1,4) are complex functions of time. This choice of the 

potential ensures that the perturbation velocity field is regular 

everywhere. 

The total velocity at a field point is then u + 74) where 

V = r i 
+ r 89 8 and u may be the analytic continuation of the basic 

flow from its original circular domains (as defined in (2.2.3)) into the 

wavy domains of the perturbed flow (as defined in (2.2.5)). The analytic 

continuation may be Taylor series expansions of the basic flow about 

points on the boundaries of the original domains. 
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The disturbed flow must satisfy the exact boundary conditions 

and 

Dt 
(r - R(t)(1 + e(t)e

is8))  = 0  

u (=(ur, u8)) 	continuous 

(2.2.6) 

(2.2.7) 

at the disturbed inner surface, with two similar conditions at the 

disturbed outer surface. The second condition ensures that the 

disturbances do not cause either a vortex sheet or a source distribution 

to appear at the surface, as these would violate the vorticity or the 

continuity equations. It 015u-reg.  that the pressure is continuous across 

the surface, as can be seen by examining the unsteady Bernoulli equation. 

Neglecting terms of order higher than 0( lel) in (2.2.6) gives 

ur  = R + (eR + Re + isu8(R)e)eis8  (2.2.8) 

_ 	Du (R) 
ur 	u = r(R) + (r-R) 	

Dr 

u 
r
(R) = 

so that substituting into (2.2.8) and linearizing the equation gives 

But 

and 

Dr 
r=R 

  

 

Bu (R) 
_ (Re + Re + isu8(R)e - R  ar 

e)eis8 
r=R 

 

Dr 
(2.2.9) 

   

Now, to 0(e), in view of (2.2.8), ur  is continuous across the 

disturbed surface so that the boundary condition (2.2.7) implies the 

continuity of 

_ 	8u8( R) 
u8  = u8(R) + R 	Dr e eis8 + 1 it 

R 88 



But since 

W 

1 a (ni 
	

_ 
r Dr 	0 

0 

r = R + 0 

r = R - 0 
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and ue is continuous across r = R, we have 

R { aĀ (R + 0) - 	(R - 0)1 = -Remeis890 

and from (2.2.9) 

_ 	au (R) 

8 (R ± 0) = (Re + Re + isue(R)E — R ar e) 

(2.2.10) 

(2.2.11) 

A similar analysis at the disturbed outer surface gives three 

further equations, corresponding to (2.2.10)-(2.2.11), in and u. 

Then substituting for from (2.2.5) and eliminating ai (i = 1,4) gives 

• E + 2 c - 2 (R )su 	=  0 

(2.2.12) 

•- ( 
2 

- irs 
	+ 2 (R )se = 	0 

	

27rR+ 	+ 

Equations (2.2.12) reduce to known results in three cases, 

(i) putting R.I. = a, a constant and R = 0 in the second of these 

equations gives the equation for a two-dimensional disturbance of 

a circular cylindrical vortex (Lamb, 1932, p.231). 

(ii) by eliminating u, say, from (2.2.12) and transforming the resulting 

equation by the substitution 

~ 
e(t) = n(t) exp(— 

isr  	dt 	) 
47T 	0 R+2(t' ) 

(2.2.13) 
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gives 

2 	s 1 2• •  
- 2sRRv n• 

 + n[4 ((1-vs)2  - (1-2v) ) + R R s(s-2)] = 0 	(2.2.14) 

where 
_ A 

v 	
2R 

2. 

By taking the limit R -} R in (2.2.14), the equation governing 

perturbations on a uniform expanding vortex sheet, as given by Moore 

& Griffith-Jones is recovered. 

(iii) If R = 0, then (2.2.14) reduces to the equation governing 

small perturbations on a non-stretching uniform circular vortex 

layer and is in agreement with the result obtained for this case 

by Zakharov (1977). 

From (2.2.12), it can be shown that 

* 	t 
isr 	dt'  

' 
= ±n exp(- 

4Tr 	J 	2 	) 
0 R+  (t') 

(2.2.15) 

where the asterisk denotes complex conjugate. Thus, in view of (2.2.4), 

the disturbed surfaces are given by 

	

t 	, 

	

r = R(1 + I nl exp[is(6- r f 	dt 	) + ia(t)l) 
4n 0 R

+2  (t') 

(2.2.16)t 
t 

r = R+(1 ± Inlexp[is(P - 
r j 	dt 	

) _ ia(t)l) 
rn 

o R+
2
(C) 

Thus, since 6 = 0 at the inner surface and 6 = r/2nR+2  at the outer 

surface, it follows that the disturbances on the two surfaces travel 

in opposite direction with equal phase speed. 

tHere e
ia(t) 

= n/hni 
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It may be noted from (2.2.14) that when s = 2, so that the 

surfaces of the vortex layer are distorted into ellipses of small 

eccentricity, a motion in which this shape rotates with angular 

velocity r/4rR+2  is possible. A similar result was obtained by Moore & 

Griffith-Jones for the expanding vortex sheet. The result is analogous 

to Kirchoff's well-known solution for a rotating elliptical vortex core. 

It has not been possible to find an analytic solution of (2.2.14) 

for s ¢ 2, even in the case where the radius is a function of time of 

the form considered by Moore & Griffith-Jones, viz., 

R(t) = R0(1 + at)n  (2.2.17) 

where R0(>0) is the initial radius and a and n are arbitrary constants 

assumed positive for an expanding radius which does not become zero 

for t > 0. 

However, in the case of short waves of wavelength comparable to 

the thickness of the layer, it is possible to obtain an approximate 

solution to (2.2.14) for a general R(t) using the WKB method. This is 

developed in §3. 
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§3 Short waves of wavelength comparable to initial layer thickness  

For a layer of thickness b(t) = R+(t) - R(t) small compared with 

R1(t) = '(R+ + R ), it is proposed to solve (2.2.14) approximately in 

the case when the wavelength of the disturbance 2,rR1(t)/s is of the 

same order as b(t). To be specific let 

s = ms 1 

b(t) = b1(t)/m 

(2.3.1) 

where m is a large parameter and R.1/1 1 is of the same order as s1 

so that 

s b (t) 
s(t) = sb(t) _ 	1 1 

TM"  t) 	R1 t = 0(1) 	(2.3.2) 

Then, in (2.2.14) 

R b 
v = 	1 	2 	ms 

(1 - 
ms 

+ 0( 2 2)) • 

	

(R1 + b/2)2 	 1 	m sl 

and 

ms 	2 
(1-2v)S = (1 - 

ms 
) 1 = e

-2
13(1 + ms + 0( 21 2)) 

1 	1 	m sl 

so that (2.2.14) is approximately given by 

• 
- 

2Rls 
n + n[m2s12cD0 + 06m s1)] = 0 	(2.3.3) 

1 

where 
2 

~0 = 	
2r 4 2 ((1 - 0

2 - e-20) 

16n R
1 0 

(2.3.4) 
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An approximate solution to (2.3.4) for large m is then given 

by the WIG method as 

t 
n ti 	exp( is f ō1(t')dt') + --r-exp(-is f 0p (t')dt') (2.3.5) 

00 	0
o 
	0 

where s = ms1 is now written. The expression 00 is analogous to the 

dispersion relation (2.1.1) governing the growth of waves on a straight 

uniform non-stretching vortex layer; indeed if R = 0, (2.1.1) is 

recovered in the above approximation. 

The approximate solution (2.3.5) is valid only if 

2 	
-1/4 

 
s2 	

_
» 

~O d 00 (2.3.6) 

(Olver (1961)). Thus, in general (2.3.5) is true for a restricted 

range of values of t. In particular, it is not valid at such times 

as when 00 vanishes. 

As remarked in §1, 00 vanishes when a = Sc = 1.28, i.e. when the 

wavelength of the disturbance is 4.85 times the thickness of the layer. 

For an expanding vortex layer, s(t) is a monotonically decreasing 

function so that if 8(0) > 8c, 00 will vanish at a finite time t = tc, 

such that 8(tc) = 8c, and (2.3.5) will not be valid near t = tc. Also 

since 00 is positive for t < tc and negative for t > tc, the essential 

character of the solution (2.3.5) for t « tc and t » tc, when it is 

valid, will differ. The connection formulae relating the solution in 

these two ranges of time can be obtained and the transition solution near 

t = tc determined by standard methods. 

Thus for 8(0) > Rc 
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t 

c 	
cos(s fc (4) (t'))kit' + 

n 
- a) 	t « t 

( 	
t 	0 	4 

0 

3 
Ti ti 	c( 	

s(t ))
1/6 4cos(a)Bi(z) + sin(a)Ai(z)} t ti tc 

0 c 

c 

dcos(a)exp(s f (-~0(t ))1/2dt) + sinaexp(-s f (-~(t ))1/2dt}0
(-4) 	tc 
	

t
c

0 
 

t » t 
c 

(2.3.7) 

where c and a are arbitrary constants,are the 

Airy functions and 

z = (si0)2"3(t — tc) (2.3.8) 

The approximate solution (2.3.7) holds provided (2.3.6) is satisfied. 

For 0(0) < Sc, the approximate solution for n is given by 

t 
n(t) ti 	cosh(f s(-,1)0(t'))Zdt' + a1) 

(-4)0) 	0 
(2.3.9)t 

which holds provided (2.3.6) is satisfied. 

In the power law case (2.2.17), the right hand side of (2.3.6) is 

uniformly bounded for t>tc only if n < k. Accordingly, (2.3.7) for 

t » tc and (2.3.9) will hold for a restricted range of values of t if 

n > 1. However, for large t the thickness of the vortex layer is very 

small and the motion may be modelled by replacing the vortex layer by 

a vortex sheet and Moore & Griffith-Jones have shown that in this case 

for n > k the perturbations on the sheet grow algebraically. 

In view of (2.3.7) and (2.3.9), the final amplitude of the 

disturbance as t -> co is greater than the amplitude at t = T, where 

T = 0 if 0(0) < Sc and T = tc if S(0) > ac, by a factor of order 

tHere D and a1 are arbitrary constants. 



23 

expj4~ f 
1 	

(e 
2S - (1_0)2)Zdt' 1 . 

T R1 S 
(2.3.10) 

This is an extension to the corresponding result obtained by Moore & 

Griffith-Jones and allows for the thickness of the vortex layer. 

The solutions (2.3.7) for t » tc and (2.3.9) can be expressed 

as in Moore & Griffith-Jones in a way which enables it to be applied 

more generally. If U(t) is the jump in tangential velocity across the 

layer of uniform vorticity w at time t, and there are p/27r complete 

waves on a length of the vortex containing unit circulation, then to 

leading order the amplitude of the disturbance is proportional to 

exp[2 f (e PU2(t')/w_ (1 - U2(t ))2) dt' 
T 11) 

(2.3.11) 

where T is as in (2.3.10). This result is valid only for waves on a 

circular uniform vortex layer of non-constant strength when the wave-

length of the waves is comparable to U/w. However, it is possible that 

the result is true for any uniform vortex layer. When the vortex layer 

is not uniform (2.3.11) will require modification in view of the results 

obtained by Moore (1976) for waves on a non-uniform vortex sheet. 

In particular the vorticity w would need to be determined at each instant 

of time. 

It is interesting to note that 00 in (2.3.7, 9) is a maximum at t = tm 

when (3 = Sm = 0.634. Since the area of the vortex layer remains constant, 

bCt) = b0R0/R1(t), where b0 and RO are initial values of b and R1, so 

that s(t) = sb0R0/R12(t). Thus at S = Sm, the wavelength of the 

disturbance am = 2irR1(tm)/s is 

27rR 
a - 0.  b 
m RmR1(tm) 0 
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If the initial thickness was fb0, where f > 1, then 

27R  
__ 	0  

~m 	amRl(tm) b0 

so that the ratio am/b0 is greater in this case. Also, the value of 

tm in this case will be greater. If we assume that, in experiments, 

the waves on a stretching vortex layer are first observed when they 

have a wavelength Am, then these results would partly explain the 

observations of Crow & Barker (1977) described in §l, although the 

vorticity distribution in the layer is not uniform in the experiments 

nor is the flow laminar when the vortex layer is thickened. 
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CHAPTER 3: EQUATION OF MOTION OF A THIN 
VORTEX LAYER  

§1 Introduction 

Many incompressible fluid flows at high Reynolds number are 

characterized by thin vortex layers, surrounded by irrotational flow. 

It is usual in such flows to neglect viscosity and replace the vortex 

layer by a vortex sheet. If the instantaneous position of the vortex 

sheet can be determined, then the flow can be calculated using the 

Biot-Savart line integral. 

A convenient formulation of the motion of a vortex sheet in an 

inviscid fluid in two-dimension has been given by Birkhoff (1962). 

If r denotes the net vorticity between one end of the sheet and a 

point,with complex coordinate z,on the sheet, then the equation of motion, 

can be written in parametric form as z = z(r,t) where z satisfies 

r 
" (r ,t) = - i f 	

drs  
at 	2n 

	
s(r,t) — z(r,t) (3.1.1) 

where f denotes Cauchy principal value integral and re  is the total 

circulation in the sheet. Equation (3.1.1) reduces the problem of 

calculating the position of the vortex sheet to a marching problem in 

time and would therefore seem suitable for numerical treatment. However, 

invariably chaotic behaviour results and the solutions are sensitive to 

time step and discretization procedures used. It is possible that this 

behaviour is a manifestation of the Helmholtz instability of the vortex 

sheet discussed in Chapter 2. 

Recently Moore (1978) (henceforth referred to as (M)) has 

generalised the Birkhoff equation to a thin vortex layer of uniform 

vorticity in the hope (unrealized) that this may overcome the difficulty. 
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In this chapter the case when the vorticity is non-uniform is 

considered. The vorticity is required to decay exponentially away 

from the centroid line C (defined in §2) of the distribution. The 

free vortex layer is regarded as a double-sided boundary layer on an 

evolving space curve C whose equation of motion is sought. 

The method of solution is as in (M). Thus an 'outer' problem 

based on flow at a large distance from C due to a vortex sheet at C 

is posed. The solution to this is matched to an 'inner' solution for 

the flow in the vicinity of C. An expansion in terms of the small ratio() 

of a typical vortex layer thickness to a typical radius of curvature 

of C is developed. 

In §2 the intrinsic coordinate system used is described and the 

equations of motion established. In §3, assuming that the vorticity 

distribution w is instantaneously known, an inner approximation to 

the flow field is obtained in terms of m. 

In evaluating the outer flow only the mean properties of the vortex 

layer, such as the curvature of C and the circulation density of the 

equivalent vortex sheet are required and the actual details of the 

vorticity distribution do not matter. Hence the outer solution is 

identical to that found in (M) and the results are summarised in §4. 

In §5, the outer solution is matched to the inner solution to 

obtain an equation of motion of C in terms of the unknown vorticity 

distribution Z. 

The determination of; is discussed in §6. It is found that for 

the leading order correction to Birkhoff equation (3.1.1), the equation 

for .; reduces to the boundary layer equation and does not •len d to any 

further simplification. Thus, in general, the determination of; 

remains an unsolved problem. In §7, the equations obtained in §§5,6 

are used to study growth of long waves on an initially straight vortex 

layer of arbitrary vorticity distribution in an inviscid fluid; the 
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results are in agreement with Drazin & Howard (1962) and provide a 

useful check for the equations. 

In §8, a solution for (7, valid for small times, is found for the 

case of an instantaneously created arbitrary vortex sheet undergoing 

viscous diffusion. Hence an equation of motion for such a sheet is 

obtained. The equation is used to study long waves on a Rayleigh 

layer. 

Wherever possible, the notation used in (M) is retained. 

The equation of motion of the vortex layer in terms of the unknown 

vorticity distribution w is given by (3.5.19). The equation retains 

the simplicity of the vortex sheet model, while incorporating finite 

thickness effects approximately. In §9, a simple interpretation of 

the equation in terms of forces acting on an element of the vortex 

layer is given (the 	reader may wish to consider this interpretation 

first). 

A modification to Rirchoff's invariant for a vortex sheet is 

obtained in Appendix C; it allows for viscous dissipation. 
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§2 Preliminaries  

In this section the equations of motion for the flow in the 

immediate vicinity of the vortex layer are established. The intrinsic 

coordinate system to be used here was introduced in (M) and is briefly 

described below. 

Let s be the arc-distance measured along a plane curve C; C will 

be identified with the centroid line of the vorticity distribution. 

Let P be a point close enough to C for there to be a unique normal 

' from P to C. Let the normal meet C at 0. Then, in a frame OXY, fixed 

relative to flow at infinity, the position of P at time t is given by 

r(P) = R(s,t) + nii(s,t) (3.2.1) 

where R(s,t) refers to the point 0, n is the distance OP and n(s,t) 

is the unit normal at 0; n(s,t) points to the left as C is traversed 

in the increasing s direction (n is positive in the positive ii(s,t) 

direction). 

Differentiation of (3.2.1) and use of Serret-Frenet formulae for 

plane curves leads to 

dr = s(1 - p)ds + ndn 

where p(s,t) is the radius of curvature of C at 0 and 

DR 
s = as , 

(3.2.2) 

(3.2.3) 

s(s,t) is the unit tangent at 0. Hence the coordinate system is 

orthogonal with line elements hlds and h2dn where 

h1  E h = 1-  
n 
p 

(3.2.4) 
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If u(P) is the fluid velocity in OXY frame at P at time t, then 

define relative velocity (u,v) in (s,n) system by 

_ 	aR 	an 
u(P) = ōt + n āt + us + vn (3.2.5) 

and since 

an 

at  (s,t) = -SZ(s,t)s , 	 (3.2.6) 

where 0(s,t) is the angular velocity of the frame (s,n) .at a point with 

fixed s, (3.2.5) can be written 

DR 	 aR 
u(P) = (s . et - On + u)s + (n . et  + v) n (3.2.7) 

From (M 2.7-2.9), the continuity equation in the (s,n) coordinates is 

Du a 
as + an (hv) = n as (3.2.8) 

and the vorticity is given by 

-  z Dv curl u = h (as 	an (hu)) + 20Z' , 	(3.2.9) 

where z is the unit vector normal to the plane of flow. 

Let 

curl u =  (3.2.10) 

    

in a coordinate system Oxy fixed with respect to flow at infinity. 

Then w satisfies 

2— 2-  ac + (ū.āt) aw  + (u.Y) aw = v (
a_
2 + a  2 ) 

at 	- ax 	3y 	a x 	āy 
(3.2.11) 
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where x, y are unit vectors in the OX, OY directions and v is the 

kinematic viscosity. To make the transformation to s,n,t variables, 

we note that if 

r = (x,y), 

then it follows from (3.2.1) that 

X = x.R(s,t) + nx.n 

A 
y = y,.R(s,t) + nz.n 	 (3.2.12) 

= 

so that the Jacobian of the transformation is 

J = 	- (i.n)(x.$)) 

= -h 

After substituting for u from (3.2.7), the transformed vorticity 

equation becomes 

au) 	u au) 	v  aw = v a 	aw, 	a 1 aw 
at h as 	an 	h an 	an 	as h as 

(3.2.13) 

or, on using the continuity equation (3.2.8), 

9w 4.  l 
(

a
(
—
) 	

a (h)   	
—  as 

at 	9nmv -("Is
_   v  

( n 
 

(h 
aw 
) +MA:.))  

(3.2.14) 

The plane curve C given by 

r = R(s,t) 

in the fixed frame Oxy will now be defined. We have 

m(s,n,t) = w(R(s,t) + nn(s,t),t) 
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R(s,t) is chosen so that uniformly in s and t, w decays exponentially 

as n->±= and 

f wndn = 0 (3.2.15) 

This choice of C ensures that most of the vorticity lies in a thin 

layer containing C. The crucial advantage of this choice 	becomes 

apparent when the circulation in the layer is considered. 

For the circulation in the layer between the normal through a 

typical point 0(s,t) on C and the end s = 0 of the layer is 

s o 
r(s,t) = f f whdnds 

0 -= 

i.e., on substituting for h from (3.2.4) 

s o _ 	s o -  
r(s,t) = f f ;duds 	- f f 	

wn 	dnds 
0 -= 	0 _= P(s,t) 

so that in view of (3.2.15) 

s 	_ 
r(s,t) = f f dnds 

0 -= 

Hence, the circulation density is 

ar 
y(s,t) = 

as = f 	mdn 

(3.2.16) 

(3.2.17) 

An equation of y(s,t) can be obtained by multiplying (3.2.14) by h and 

integrating across the width of the layer. For 

00 

at f w(1 - n)dn + ō j(dnwu)-{ ass _ a (1)} f wndn 
p as 	8s at  

- v 
as 

f(dn(1 -. p)-1 ās)+ [(1 - p)wv - vh ān ]C~ = 0 
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where h has been substituted by the expression (3.2.4). Now w and 

aw 
an vanish at ±m so that on using  equation (3.2.15), 

provided 

at 	as (Ucy) = v as f (1 - 
p)-1 

as 
dn

_co 

CO CO  

Uc f wdn = f wudn 
_m 	 _m 

(3.2.18) 

(3.2.18a) 

where Uc is the convection velocity. Equations (3.2.18), (3.2.18a) 

generalise equation (3.2.32) in (M) to the non-uniform vorticity case. 

Note that for the inviscid case, the right hand side of (3.2.18) vanishes 

and we have a conservation equation for y(s,t). 

Further, we need an invariant of motion based on the definition 

of the centroid line, (3.2.15), 

CO 

0 = āt f wndn 
_m 

m 

n 3w  dn 

so that on substituting  for 
āt 
 from (3.2.14), 

n a 	-24h170 	asd — a  2E) 	 1  aw 0 = - Jm{h (as(wu) + 3n(hwv) - wn as - v(an(h  3n + as (h as dn. 

i.e., after integrating  by parts, 

0  = 
f 

{n(  a (wu) - wn aid _ 	8 (1 a1))  _ wv _ vw }dn 	(3.2.19) h as 	3s 	as h as 	h 	h2 
-O 	 ph 

 p(s,t) is the local radius of curvature of C. For a layer with 

a straight centroid line C and h -r 1, (3.2.19) reduces to 

_ 	m 
0 = 

ās () 
	wundn)- f  wvdn (3.2.20) 

=f 
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using p = co and 
an

= 0. The viscous terms vanish in view of (3.2.15). 

If at any time t, the vorticity distribution w(s,n,t) is known 

everywhere, then equations (3.2.8), (3.2.9), (3.2.18) and (3.2.19) 

enable us to determine the flow in the neighbourhood of the centroid 

line C. The details are pursued in §3 for a given vorticity 

distribution(s,n,t). 
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§3 The inner flow 

In this section the velocity field in the neighbourhood of the 

centroid line C will be determined, given that the instantaneous 

vorticity distribution is c;(s,n,t). 

We assume that 7 decays at least as fast as 

n 
exp(- S ) 	as n + ±± 	 (3.3.1) 

  

so that the scale of S+(s,t) gives a measure of the thickness of the 

vortex layer. To ensure that the layer is thin, we must have, uniformly 

in s, 

la+(s,t)/P(s,t)l < c 	 (3.3.2) 

where p is the radius of curvature of C at position s and e « 1. 

It is proposed to determine the flow velocities as an expansion 

in powers of e. 

The flow in the vicinity of the curve C will be referred to as the 

inner flow. To study the inner flow, it is suitable to use the scaled 

variables 

x = s, 	y = e 
-1

n (3.3.3) 

Then, the procedure is to expand the unknown fluid velocity u in 

powers of c. The expansion will hold in the immediate vicinity of 

the curve C, i.e. for lnl « 1pl . 

However the velocity of the centroid line C is not known, so we 

must introduce the expressions 

8R 

8t 
(s,t) = W(s,t) = 1410(x,t) + eW1(x,t)  + 	 

(3.3.4) 
an 

- āt  (s,t) = S2(s,t)s = (2o(x,t) + c21(x,t) + 	)s 



and 

Y 
ul = (21.20 + .1  )y - 

P 
 fdy f1  wdy2  + ul  (3.3.9) 

35 

as well as 

u(s,n,t) = u0(x,y,t) + cul(x,y,t) + e2u2(x,y,t) + 	 

and 	 (3.3.5) 

v(s,n,t) = 
	

sv1(x,Y,t) + c2v2(x,y,t) + 	 

The absence of v0  reflects the fact that, to leading order, the layer 

is straight. We define a scaled vorticity by 

s

- l

w(x,y,t) = w(s,n,t) (3.3.6) 

On substituting the velocity expansions into the kinematic 

vorticity equation and comparing terms of order c-1, cO, c, ... gives 

= w(x,y,t) 

au 	u 
- ā 1  = -(2Q0  + p) 

Y 
(3.3.7) 

Dv 1 	au 
2 _ 	ul 

ax 

- 

ay 	-(2St0  + p  + p2  u0) 

Hence, 

Y 
u0  = - f wdy + u0(x,t) 	 (3.3.8) 

_m 

au 0  

ay 

where u0(x,t), u1(x,t) are arbitrary, to be determined later on by 

matching. Taking the lower limit of the integrals in (3.3.8), (3.3.9) 

and in (3.3.11) below,is justified in view of the exponential decay of 

the integrand as y -} -m. Further terms of order e
2 
 and higher are not 

calculated here since it is intended to obtain only a first order 

correction to Birkhoff's equation to allow for the vorticity distribution. 
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On expressing the continuity equation in terms of the scaled 

variables and substituting the velocity expansions (3.3.5) in, gives 

au

O 
avl = 0 

ax 	ay  

(3.3.10) 
au av 	an v au 1 +  2 = y 	 + 	 _ 	0 
8x 	ay 	3x 	p 	p0 8x 

Here, v is only required to leading order so that using the expression 

for u0 from (3.3.9), 

y 	
a 

yl 	au0 
— 

 

vl 	f dyl ax f 
wdy2  - y 

ax 
+ vl(x,t) 

_m  
(3.3.11) 

vl  will be determined below. Note that u0, ul  and 	aree terms 

independent of y in the expression for the relative velocity at -02 

and therefore differ from the corresponding functions in (M). 

On rewriting equation (3.2.19) in terms of the scaled variables 

and substituting the expansions (3.3.5) and expressions (3.3.6), (3.3.7) 

in 0(e) terms give, 

W 	 o 

0 = 8x f yu0wdy - f wv1dy (3.3.12) 

which is the same as (3.2.20), as it must be since to leading order 

the centroid line of the vortex layer is straight. 

Inserting the expressions for u0, vl  from (3.3.8) and (3.3.11) 

into (3.3.12) gives 

a 	yl 
0 = aX f wy{- f wdyl  + u0(x,t)}dy - f w{ f dyl ax f wdy2 

au0  
y ax 

 + vl(x,t)}dy 



37 

so that, since 

J wydy = 

(c.f. (3.2.15)), 

CO 

vl'y = - ax  J wy 
_m 

y 
J wdyldy - 
-m 

f dyw 
_o 

y 	yl a 
l dyl ax f wdy2 —co 
	 m (3.3.13) 

where 

y(x,.t) = J wdy 

as defined in (3.2.17). After a little algebra, 

v 	= - 	1 	a f A(y(x,t)  - A)dy 	(3.3.14) 
1 	Y(x,t) 

ax _m 

where 

A(x,y,t) = J wdy 

The relative flow velocities, to 0(e), near the curve C are now 

determined except for the arbitrary functions u0, ul; these would be 

determined, once the boundary conditions as y -} ±m are made available. 

In §4 an 'outer' flow, valid for Inl » jR+(s,t)I, is obtained. By 

matching the outer flow solution in the limit n -} 0+  with the inner 

solution in the limit y -} ±m, the arbitrary functions of x and t which 

appear both in the inner and outer solutions are determined. This is 

done in §5. 

For later use, an approximate expression for the velocity of 

convection of vorticity, Uc, will now be derived. From (3.2.18a), 

and using (3.3.3), (3.3.5) and (3.3.6) 

YUc 
= f wudn 

CO 

= J 
	
{u0  + eul  + E2 u

2
+ .... }dy 

-co 



38 

On substituting for u0, ul  from (3.3.8)-(3.3.9) 

Y 

YUo  = f w[ - f wdy1  + u0]dy'+  c f w[(2% + 
u
°)y - P f dy1  fl wdy2]dy 

-m -m 	 -m 	 p -m -m 

+ 0(e 2) 

and after using (3.2.15) and integrating by parts, 

m 

U  = (- Y + u0) Yp 
 f A(y-0)dy + e u1+ 0(e2) 
—co 

where A is as in (3.3.14). 

(3.3.15) 
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§4 The outer flow 

In the outer region, i.e. for Inl »1B+(s,t)1, in view of the 

exponential decay (3.3.1), the vorticity is negligible and the flow 

is therefore effectively irrotational. It will be characterized by 

the mean properties of the vortex layer and will be insensitive to 

the actual details of the vorticity distribution. Hence, with the 

appropriate definitions of the position of the equivalent vortex sheet C 

and the circulation density y(s,t), the outer solution will be identical 

with that given in (M). The results obtained there are summarised below. 

Let Z(s,t) be the complex parametric equation of the centroid line 

C where 

Z(s,t) = R(s,t). x + 	 (3.4.1) 

with R(s,t) as in (3.2.1). Then, in terms of the intrinsic coordinates 

(s,n), points z', z' = x' + ii', can be written 

z' = Z(s',t) + in'ela  (3.4.2) 

where a'(s',t) is the inclination of the tangent s(s,t) to the OX 

direction. For each z' there is a unique a' provided Intl « p(s,t). 

If now the flow in the outer region In' » IS+(s,t)lis regarded as 

being irrotational, the velocity at z can be expressed as an analytic 

complex function 

q(z,t) = u(x,y,t) -  (3.4.3) 

where 171- and  v are the components Of u in Oxy frame. Then 

q(z ,t) = 
a(t) w'(1 - n,)dn'ds' 

	

i r 	f 	P  

	

2r 0 	J  z — (z(s;t) + in'eia ) 
(3.4.4) 

where ' means that the quantity is to be evaluated at (s',n') and where 

the range of the integration with respect to n' is extended over the 
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inner region. 

Since 

< 1, 
lz - Zt(s,t)l 

the integrand in the inner integral in (3.4.4) can be expanded and 

integrated term by term to get 

CO 

a(t)  w'dy'ds' a(
t) ia` 	co 

q(z,t) = 
"" 

	- Z' 	 - 2f  j { 
 ie 	

2 	
1 	} fu'y'dy'ds' + 

0 	 0 	(z - Z) 	p'(z -Z') -= 

+ 0(c2) 
	

(3.4.5) 

where the inner variable y = n/e has been introduced and the limit of 

the y integration has been extended to (-=,o) in the convention of 

boundary layer theory. The integrals in the 0(e2) term can be shown to 

remain bounded as z -' Z(s,t) so that (3.4.5) is uniformly valid in z. 

Now, in view of the definition (3.2.15) of the centroid line C, the 

0(e) term vanishes. Hence the error introduced in replacing the vortex 

layer by an equivalent vortex sheet at C is 0(e2). 

This is a familiar result in boundary layer theory where the effect of . 

the boundary layer is taken care of by considering the surface to be 

at a distance Si  above its true position, 61  being the displacement 

thickness; the error introduced is 0((61/2,)2), R. being a typical length 

scale. 

For z satisfyingly±l « lz - Z(s,t)I « p, on writing 

z = Z(x,t) + ieyeia 
	

(3.4.6) 

(3.4.5) becomes 

a(t) 
q(z,t) = 	r 	

Y(x',t)dx' 
ia 	+ 0(eZ) 

0 Z(x,t) 	+ icye 	- Z' 
(3.4.7) 

n' 
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The integral on the right hand side is analytic for y > 0 and y < 0 

but is discontinuous across C. The limits as y -} 0+  can be obtained 

by making use of the Plemelj formulae. Hence the inner limit of the 

outer solution can be written 

ia aQ+(Z,t) 	
2 

q(z,t) = Q+(Z,t) + icye 	
az 

+ 0(6 ) (3.4.8) 

where 

Q+(Z,t) = lim q(z,t) {from ± side of Cl . 
z+Z 

From the Plemelj formulae, 

-i  a(t) y (x',t)dx'  Q+(Z,t) = 
 ky(x,t)e-ia(x,t) (3.4.9) 

where the slash denotes Cauchy principal value. 

This is to be matched with the outer limit of the inner solution 

obtained in §3; the details are pursued in §5. 

For latter use, the integrand in (3.2.18) may be expanded in 

powers of n/p and integrated term by term to give, in view of (3.2.15) 

and (3.2.17) 

at +  as 
cyUc) = T;(2.1 0(c2)) 

as 
(3.4.10a) 

where Uc  is defined by (3.2.18a) and given in terms of the inner flow 

by (3.3.15). We now restrict ourselves to the cases where either v 

is zero or when the thickness of the layer is 0((vT)) where T is a 

characteristic time of the motion of the layer. This implies that 

right hand side of (3.4.10a) is 0(62) so that 

D7 
+ 
ā 

 (yUc) = 0(c2) 	 (3.4.10) 



42 

The restriction also implies that the vorticity equation (3.2.14) to 

leading order is 

aw + p(Z) +  a(vg) = — a2w 
Bt 	as 	an 	" an2 (3.4.11) 

Equation (3.4.11) imply that for flow at high Reynolds number, the 

boundary layer equations determine w to leading order in e. 
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§5 The equation of motion of the layer  

From equation (3.2.7), the velocity in the vicinity of C 

« p(s,t)) is given by 

aR 
u = āt + (u - On)s -vn 

In complex notation this is 

q'(z,t) = at 
+ (u - S2n)ē 	ē la  - iv ia 

(3.5.1) 

(3.5.2) 

As in (3.3.4), the unknown time derivative of Z*  is expanded in powers 

of e, 

at = H0+FIIl+... (3.5.3) 

Then in terms of inner variables, and expansions (3.3.4)-(3.3.5), 

qI (z,t) = II*  + u0e-la + cm*  + (u1-S20y-iv1)e
-

1171)e 
	
+ 0(e2) 

(3.5.4) 

In the limit y -} ±00, equations (3.3.8), (3.3.9) and (3.3.11) yield 

u0(x,±03,t) = 

-y + 

u0  

u0  

(3.5.5), 

ul(x,±m,t) = (2n0 + 	)y u  + l 	
( O (3.5.6) 

and 
ay 

 

 

au0  _ 	• {  ax 
vl(x,±o,t) = —y ax + 

vi 
 + 	0 

(3.5.7) 
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In (3.5.6) and (3.5.7), the terms proportional to y are those which 

would be present in the irrotational flow in the vicinity of a vortex 

sheet. It is expected that the terms independent of y arise due to 

the distribution of vorticity in a layer. 

Substituting expressions (3.5.5)-(3.5.7) into (3.5.4), we require 

that for fixed y gI(z,t) must coincide with (3.4.8) as a -} 0. 

The 0(1) matching gives 

* 	- -ia 	i a(t) _ Y(s',t)ds'  
rt + (-Ty + u0)e 	= - 2n 00 	Z(s,t) — Z(s',t) 

(3.5.8) 

This is as in (M); note, however, that the definition of u0 is different 

here. 

In the 0(c) matching, as may be expected, the terms proportional 

to y reveal no new information. However, for consistency, these must 

be matched and this is checked in Appendix A. Matching of terms 

independent of y gives 

Iil + (ul - iv)e ia = 0 	 (3.5.9) 

Hence, from (3.5.3), 

8Z* __ _ i a(t) Y(s',t)ds' 	- 	- - 	-ia 
8t 	2~r 

Ō 	
Z(s,t) - Z(s',t) - {-

ky + u0 + c(u1-iv1)}e 	+ 0(c) 

(3.5.10) 

It is convenient to introduce Birkhoff's circulation coordinate r. 

Suppose s(r,t) is the arc distance along C to a normal section which 

has constant net vorticity r between it and the end s = 0 for t > 0. 

Then 

r(s,t) = f y(s',t)ds' 
0 

(3.5.11) 
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so that 

0 = y(s,t) (āt)r + f at' ds' 	(3.5.12) 
0 

Now from the circulation density equation (3.4.10), 

aY -a (U y) at 	- as c 

On substituting for ay/at in (3.5.12) gives 

0 = y(s,t) (aa. ) - Ucy(s,t) 

so that, since y(s,t) 	0 for s # 0, a(t), 

(ā 
as
t)rr = Uc 

Hence if r,n,t are the new independent variables and we write 

s(r,t) = z(s,t) 

u(r,t) = y(s,t) 

= o(s,t) 

(3.5.13) 

(3.5.14) 

(3.5.15) 

then 

a 	a +U a 
(āt)r = at 	c ās (3.5.16) 

The function u0 + eu1 can be eliminated from (3.5.10) by introducing 

Uc from (3.3.15) so that on substituting for v1 from (3.3.14), (3.5.10) 

becomes 

aZ* + U e ia = - 
i a(t) y(s',t)ds~ 	- e ia[1 r ay-A)dn + i a 1 ~(y-A)dnJ 

at 	c 	2w 
0 

Z(s,t)-Z(s,t) 	y p 	ax 

+ 0(e2) 	(3.5.17) 

or in terms of r,n,t, on noting that 

Da __ 1 	aZ __ is 	a 	a 
as 	p ' 	as 	

a 	and Ts- _  U ar 
(3.5.18) 
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* 	 re 	* A 
az 	i 
at (r,t) = - 2n f  Z(r,t)rg(r',t) 	ār [u ar  j o(U-n)dn] + o(E2) 0  

(3.5.19) 

Now from (3.5.18), it follows that 

eia = U  as 
ar 

where a(s,t) and U(r,t) are real so that 

1 = 
U l arl. 	• (3.5.20) 

Thus u(r,t) can be determined from the instantaneous configuration of 

z(r,t). 
03 

The function j A(U-A)dn characterises the distribution of vorticity 
_„ 

in a layer so that the instantaneous value of w or 0 needs to be known 

before it can be determined. In the next section an equation for A is 

derived. 

If all the vorticity were concentrated in a sheet at C, the term 

in [ ] in (3.5.19) vanishes and we recover Birkhoff's equation of motion 

of a vortex sheet. It may be noted that the correction term can be 

written as 

where 

-i a [6 U3 as*
] 

 2 	ar 

62  = j v (1 - Ū) dn 

(3.5.21) 

(3.5.22) 

62  can be identified with the momentum thickness of the layer if we 

define the momentum thickness as 

(U2-u)(Uī u) 
62  = f 	2 	dn 

-co (u1-U2) 
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where U1, U2  are respectively the "streamwise" velocities at ±o 

and u is the local component of velocity tangential to C. In appendix B 

it is shown that S2  satisfies the boundary-layer type energy equation. 

Moore (M) has shown that linear and angular impulse are conserved 

by the solutions of the modified Birkhoff equation in the case of a 

uniform distribution of vorticity. His argument can be used to show 

that these still hold good for solutions of (3.5.19) when the vorticity 

distribution is non-uniform. Moore also derives a modification to 

Kirchoff's invariants for the uniform vorticity case. In Appendix C 

this has been extended to the non-uniform vorticity case. The final 

result is (C3.8) 

r 	 r 

	

P e 	_ e = 
dt (WO  - 2 f US2dr) =-u f Ū f m

2dndr + 0(c2) 

	

0 	0 -o 

where 

r r 
PO  e e 

WO  = - Sr J f loglz(r,t) - z(r',t)l drdr' 
0 0 

p0  being the density of the fluid and u = p
0 
 v. Hence an invariance 

is obtained if v = 0. 

Finally, for later use, the circulation density equation (5.4.10) 

can be written in terms of r,t variables as 

aU 	U2
3 (-1/2u + 	) = o(e) IF I-  ar 	o  (3.5.23) 

where 	u0(r,t) = u0(s,t). 
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§6 Equation for Ur,n,t)  

Before (3.5.10) can be used to evaluate the instantaneous position 

of a point on the centroid line corresponding to r, the instantaneous 

value of w(r,n,t) or °(,r,n,t) must be determined. Since w appears 

in the 0(c) term in (3.5.10), it is only required to leading order 

in e. As remarked in §4, w to this order is given by the boundary 

layer equation for vorticity (3.4.11), viz. 

_ 	- 2-  

at + as (uw) + ān (1,7) = va2w 

an 

where the leading order terms in u and v are implied. 

Integrating (3.6.1) across the layer gives 

DA -  + 8 r uwdn' + vw = v 8w at as 	 an 

(3.6.1) 

(3.6.2) 

using w = ān 	= 0 at n = 	The constant of integration is zero in — 

view of the circulation density equation (3.4.10). Then substituting 

for u and v by the leading order terms in (3.3.8) and (3.3.11) and 

using (3.3.14) gives 

a° 	a°2 + D,- °) + sa 2 f °dn' - n 
Du 

 - 1 a-  = v a?° at - as 	
--kU 0 	an ās _~ 	as 	y as-2' 	

an 
(3.6.3) 

where d2 is given by (3.5.22). 

Thus, writing in terms of r,n,t variables and using the circulation 

density equation (3.5.23) gives 

an  
āt + u ār (°u-z)) —

ō 
 
au

+ 
aē`  a n 

at 	 n
u 	°dn  + nu( aaut  - u22 Ear) 

 - 	2] 

— a2A 
= v 2 

an 
(3.6.4) 
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aU__ 	3 	as a2z 
at 	

-u Re(ar atar 

so that, in view of (3.5.10), 

DU  
ā 	

-U3 Re (ag aI ) + 0(e) = 	ar ar 

where 

- i 	re 	dr'  
o z(r,t) - z(r',t) 

Hence (3.6.4) becomes 

a:&+ tu 4a(u-Z)) 	 a a au as2 
 + 	( an (u 	n ār j &d - Tar - ar ) 

_ 2^ 
v a - U2 Re(as 8I)(a - n aA) 
an2 	

ar ar 	an 

I 

(3.6.5) 

(3.6.6) 

The boundary conditions are: 

n 
(a) A-~ U(r,t) as n-}m, A-}0 as n -} 

(b) A-YO as r+0, re 

(c) ān = 0(exp(-I n14js+(r,t)D) 	as n -s ±co 

Thus for a given initial distribution, A(r,n,0) = A0(r,n), equation 

(3.6.6) and the above boundary conditionsspecify A(r,n,t). In general, 

the problem of evaluating A(r,n,t) is a formidable task and would have 

to be solved numerically. 

In §7, equations (3.5.19) and (3.6.4) are linearized to consider 

perturbations on a straight vortex layer of arbitrary steady velocity 

profile for the case v = 0. 

In §8, the equation of motion of a vortex sheet undergoing viscous 

diffusion is obtained and growth of small perturbations on a Rayleigh 

layer is studied. 
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Meanwhile,it may be noted that if w = w0, a constant for 

-H(r,t) < n < H(r,t), w = 0 otherwise and v = 0, then 

A = w
0 
 (n+ H) 	and H 

U 

2w0  

On substituting this into (3.5.19), we recover Moore's equation 

(M(4.20)) for the motion of a thin vortex layer of constant vorticity. 
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§7 Growth of long waves on a straight vortex layer in an inviscid  
fluid 

In this section instability of an initially straight and steady 

vortex layer in non-viscous fluid to disturbances of wave-numbers k, 

k/k1  « 1 (where k1  is as defined below), is considered using the 

equations derived in §§5,6. The results for the growth rate are 

compared with Drazin & Howard (1962). 

The vorticity distribution in the unperturbed layer is taken to be 

w
0 
 (y), where (x,y) denotes position in Cartesian coordinate system OXY 

with the centroid line C along OX for t < O. In view of equation 

(3.3.1), it is assumed that w0(y) -} 0 as y 	±m  at least as fast as 

exp(-k1IYI).  Suppose the streamwise velocities at y = ±m are + V/2. 

Then the perturbed centroid line can be written, 

z(r,t) = v lr + f(r,t) 	(3.7.1) 

where Iaf/art « V
-1

.  The integrated vorticity function a is taken to be 

& r,Y ,t) = e0(y) + e '(r ,Y, t) 

where e0(y) =w0(yl)dyl  and Ie'I « Ieo I , uniformly in y. 
_m 

(3.7.2) 

On substituting (3.7.1) and (3.7.2) into (3.5.19) and (3.6.4), 

with v = 0, gives on linearizing 

af* 	iV2 mt tf(r,t)-f(r',t)]dr'  + iv M {a 2f 	D
2
f
š 
 } 

at - 2n T 
(r - r')2 	2 0 ar2 - ar2 

ae' 	2 	ae' 
	:y°0E v

y se' 	 0se

āt+ (v -ve0) 
ar+ 

	jm  ar dyl  + M ] = v(y ay — e0) x 

2 

x(at 	2 ar) Re[ār] 

where 

co 	 co 
M0  = f e0(V-e0)dy , 	M' = 2 f (V-e

0)2ar dy 

(3.7.3) 

(3.7.4) 
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In order to consider sinusoidal disturbances, f and A' are 

chosen to be 

r 	r 
f(r,t) = eat (a+ eik /V 

+ a_e_ ik /V) 

(3.7.5) 

a'(r,t) = eat(a+(y)eikr/V + 6_(y)e-
ikr/V) 

where a+, 4+ have complex values, a+ being constants. 

On substituting (3.7.5) into (3.7.3) and evaluating the principal 

value integral by contour integration, terms proportional to eQt+ikI'/V 

can be equated to yield, 

* (w1-w2) 	k m (wl-w)(w-w2) 	* 	2k aa+ = 	2 	a_ - 2[ f 	w -w 	dy J(a_-a+) 	[(w -w f (wl-w)A_dY] 
1 2 	 1 2 -o 

(3.7.6) 

(w -ww2) 	k °° (wl w)(w-w2) 	2k  Qa* = 	2 a - 2[ f~ 	w1-w2 dy] (a + a
*
_) + [(wl-w2) f~ (w1-w)fl+ dyJ 

(3.7.6a) 

while from (3.7.4), 

wA - w' [ f A_ (yl) dy1 + 2 f (wl- w ) "- dy]  1] 2 (w-w2-yw') (a+ + a_) 
-o 1 

(3.7.7) 

y 	W (w1-w) 
(2a-w)h+ + w'[f A+(yl)dyl + 2 f

c0 
( 	+(y1)dyl] 

1 2 

- 2 (w-w2 -2 yw')(a*+a+) (3.7.7a) 

CO 

03 



Here 

w(y) = a - ik(2  - DO(y)) 

w1  = w(m) = a + ik 2 

w2  =_ W(-03) = a - ik 2 

(3.7.8) 
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and ' denotes differentiation with respect to y. This notation is 

consistent with that of Drazin and Howard. 

On noting that 

(2Q-w)*  = w, 	wl*  = w2, 

the complex conjugate of equation (3.7.7a) can be written 

* 	co (wl-w ) * 	wl  
wA
* 
 - w [ I 0+dy1  + 2 f (w  _w )A+  dyl 1 = 2(w-w2-ywr )(a+  + a) 	(3.7.7b) 

1 2 

which is identical. with (3.7.7). Hence 

A+(y) = o_(y) 	 (3.7.9) 

is a solution. 

The solution of (3.7.7) is straightforward and is given in 

Appendix D. If this solution is substituted into (3.7.6) and, in view 

of (3.7.9), into the complex conjugate of (3.7.6a), then after a little 

algebra, 

C 
k 	F1 	wl-w2 + 	

(F - l )

)[a

[a+*Ia - 	 2 + F )  -( 2 	(w -wl2  2 	2 

F 

	

w12  k(F2 2 	 k 	1 
2 + (w1  - w2) 	a + (w (2 + F2  ) 	

)  

= o 	(3.7.10) 



F2 = f 	2 	(2(w1+w2)w + w1w2)dy 
2w 

= (w-w
1
)(w-w2) 

where 
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co 

F1 = f (w-w2)(w1-w)dy 

Then setting the determinant of the matrix in (3.7.10) to zero gives 

the dispersion relation 

a2 + (w1-w2)2 + k W (w2-w1)(w2-w2) + k2(f (wl-w)(w-w2)) 
x f  	 f 	 4 	2 -~ 	w2 	(w1-w2)2 

= (w-wl)(w-w2) 
x f 	2 	(2(w1+w2)w + w1w2)dy = 0 
-co 	w 

(3.7.11) 

The last term on the left hand side is evidently of the 0((k )2), since 
1 

the layer, and for consistency cannot be retained; terms of that order 

have been excluded from the governing equation (.3.5.19) and (3.6.4). 

Hence, on noting that 

2 (w1 w2)2 	w12+w22  
a
2 
	

4 	
= 	2 

(3.7.11) becomes 

(w
1 	2) 	= (w 2-w 2)(w2-w 2) 
1 2 2  	k f 	1 2 	2 	- 0(k2S22) (3.7.12) 

This is in agreement with equation (2.9) of Drazin & Howard (1962). 

the coefficient of k2 is 0(522), where S2 is the momentum thickness of 
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§8 The equation of motion of a viscous vortex sheet  

Here, the effect of viscous diffusion of vorticity on the motion 

of an instantaneously created arbitrary vortex sheet in flow at high 

Reynolds number is considered. A solution, valid for small times, for 

the vorticity distribution is derived and hence, using (3.5.19), an 

equation of motion of the sheet is determined. The equation is used 

to study the growth of long waves on a Rayleigh layer. 

For flow at high Reynolds number, the equation for the vorticity 

w is given by the boundary layer approximation (3.6.1). However, it 

is convenient to express the equation in terms of r,n,t variables. 

Thus on differentiating (3.5.4) and using the continuity equation gives 

+  
	 ~ 

 

Du  a( U - D) 	
+ [ 	n- nU2 	- 	aw —  a23 

t 	ar 	2- n 
an2 (3.8.1) 

where now w = w(r,n,t), d2 is given by (3.5.22), U,As are as in (3.5.15) 

and where the circulation density equation (3.5.23) has been used. 

In view of (3.5.23) and (3.5.20), the circulation density u(r,t), 

to leading order, depends on the configuration of the vortex sheet and 

external flow field. It is insensitive, to this order, to the details 

of local vorticity distribution. Thus w(r,n,t) may be written 

w(r,n,t) = U(r,t)w(r,n,t) 	 (3.8.2) 

where 
m 

1 
	

wdn = 1 + 0(e) 

In (3.8.1) the rate of change of vorticity at a station r along 

the sheet is governed by viscous diffusion and convection relative 

to the vortex sheet. It is expected that initially, the influence of 

the former will far outweigh that of the latter. Thus the equation 

for wl, the first approximation to w, is 



at 
an2 

awl — 3 w1 = v (3.8.3) 

2 _n2 
+ e_ n [3 (2)~ + 1/2(n2 - 1) - ne 

tu au 
{ 2A n erf n(1 - erfrt) + 2 	

2(1.1t)
ār 

2J 
(n2 - k)erf r1]} 
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and the required solution is 

wl 

2 
e n 

Ti = 
n 

 

(3.8.4) 

   

 

24-t- 

 

00 
This satisfies f wl = 1 and wl -4- 0 n -} ±W . To obtain the second 

approximation, put 

w = wl +w2 

and substitute into (3.8.1). This gives 

2^ 

ate 
- v a 22 	( at + (1U2 - UA1) aT)wl  + 

an 

 a n 	D
una ° 

+ [u 	 f dn - n 2 	 ^ 	^ 
 ~ ~ )dn]

awl 
r 	 1 	ar 	ar 	 1 U 1 	3n 

(3.8.5) 

(3.8.6) 

n 
where 	D1 = U f w1dn. 

-00 

In view of (3.5.23) it can be shown that 

w = 

 

_ 2 
i 

t 	3U 
 at (n - k)e n 

2U(-15t) 

(3.8.7) 

This satisfies f w2 = 0 and w2 -; 0 when n 	. Thus, in view 

of (3.8.5), 

f 
"(U-~)dn = (

2yt)'~U2(1 + t DU + 0[tU 3U]2) f 	r 	2U at 	ar (3.8.8) 
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Then since, from (3.6.5) 

DU _ 
at - -U3 Re(ār ar) + 0(E), 

substituting (3.8.8) into (3.5.19) gives 

8s* 	27t 	a 3 as* 	2 	as ai 	aII 2 	2 

at (r,t) = I - i( 	) Dr 	ar [1 — tII Re(2 2r) + o((tII ār) )]) + 0(E ) 

(3.8.9) 

where 

r 
I _ _ i te 	dr'  

2n ō 	$(r,t) - z(r',t) 

Equation (3.8.9) is the main result of this section. The rest of 

the section is devoted to considering the growth of long waves on a 

Rayleigh layer. 

Suppose that instantaneously at t = 0 an infinitely long straight 

vortex sheet of constant strength V is created in a fluid of viscosity v 

so that if undisturbed its configuration would be given by s= rV-1. 

Suppose now that at t = 0 the sheet is so disturbed as to assume an 

instantaneous shape 

s(r,t) = rV 1 + f(r,t) 	(3.8.10) 

where laf/arl « v-1.  It is proposed to study a particular form of 

disturbance f(r,t). If (3.8.10) is substituted into (3.8.9) and only 

terms linear in f are retained, then after a little algebra, we have 

ā = Il + iV3(2~t) (2 a22 + 1 a22 # + t Re(ar1)) + 0(E2) 
ar 	ar 

	 (3.8.11) 

where 

co 

	

iV2 	[f(r,t) - f(r',t)] 
dr 

_ 
Il = 	2n 	(r - r,)2 J 
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f(r,t) is chosen so that it represents a sinusoidal disturbance 

of spatial wavenumber k, viz., 

r 	_ 
f(r,t) = ae

ik /V + be ik
r 
/V 

(3.8.12) 

where a(t), b(t) are complex valued. On substituting (3.8.12) into 

(3.8.11) and evaluating I1 by contour integration, terms proportional 

to 
a+ikr/V 

can be equated to give 

da* _ iVk 	2vt % 	* iVk 
dt 	2 (

b - k(,~ ) [3b + a + 
4 

t(b - a )]) 

(3.8.13) 

db* _ iVk(a - k(2vt)[3a + b* + l 	t(a - b*)l) 
dt 	2 	n 	4 

The form of equations (3.8.13) suggests that a possible choice 

of solution is 

a(t) = b(t) = a(t) + is(t) 	 (3.8.14) 

say. This choice is not unique (e.g. a =_ -b is also a solution) but it 

will suffice for our purpose. 

Putting (3.8.14) into (3.8.13) and equating real and imaginary 

parts give 

Vk 
a = - 	{1 -2k(2

7r
t)~}$ (3.8.15) 

• = - Vk {1 - 4k(-2-150}a- V2k3t(2`vt)~8 
2 	r 	4 	Tr 

(3.8.16) 

where the dot denotes differentiation with respect to time. 

It is convenient to express (3.8.15), (3.8.16) in non-dimensional 

form. Write 

t = 	t1, 	a(t) = a(0)a1(t1), 	s(t) = a(0)81(t1) 	(3.8.17) 
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and define a Reynolds number R = 1rV/vk. Then (3.8.22), (3.8.23) become 

• 
- 4(-10

• k 
101 

 

(3.8.18) 

 

— 8( 

• 

)k}a 
R 	

1 

2t 
3/2 
1 

S1' (3.8.19) 

The choice of the Reynolds number R above means that the 

approximation in a leading to the governing equation (3.8.9) is valid 

for t1 « R. The approximate solution to the vorticity equation is 

valid for t1 « 1. Equations (3.8.18), (3.8.19) therefore hold when 

both conditions are satisfied. 

The equations were integrated numerically for a range of values 

of the Reynolds number with initial conditions X1(0) = 1, 01(0) = 0. 

The integrations were carried out up to t1 = 0.15R although the results 

are strictly true for t1/R « 1. The results are displayed in 

Figs. 3.2, 3.3. Fig. 3.2 shows a plot of amplification rate 

• 
a/a vs. (t1/R)k = k(2~)~ for R = 100, 500, 1000, 2000. The amplification 

rate achieves a maximum at (t1/R)k = (t1/R)max which is quite outside 

the range of validity of the governing equations. However, it is 

interesting to note its dependence on R which is displayed in Fig. 3.3(b). 

(t1/R)m decreases with 1/R andc 2=2c o Inns; a value 0.031. This 

implies that in fluids of small viscosity v, the waves of wavelength A 

on a Rayleigh layer grow fastest when t = 0.00015X2/v. Also displayed 

in Fig. 3.3 is the dependence on Reynolds number of ( t1/R)c, the value 

of (t1/R)1/2 > 0 when a vanishes although (t1/R)k is ou tside the range of 

validity of the governing equations; (t1/R 
c 
decreases with 1/R and 4 k 

2Gtft% l~ a s' a value 0.125. This implies that waves of wavelength A 

stop growing on a Rayleigh layer of small viscosity v when t = 0.002A
2 
/v. 

• 
Figure 3.2 shows that for (t /R)1/2 > (t1/R)c, a vanishes again when 

(t1/R)k = 0.25. This can be inferred from (3.8.18) where the right 
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hand side vanishes at this value of (t1/R)k. It is believed that 

this is a spurious effect and is a consequence of the truncation in 

the expansion in a made in deriving the governing equation of motion 

of the layer. The effect corresponds to that found by Moore (M) in 

the uniform vorticity case when equations corresponding to (3.8.18), 

(3.8.19) for that case were used to study growth of long waves on a 

straight layer. As Moore points out, the appearance of this spurious 

effect means that any attempt to integrate the modified integro-

differential equation (3.8.9) will be faced with a serious difficulty. 

For, even though the value of (t1/R)~ = k(vt/2n)k at which the spurious 

growth appears is quite outside the range of validity of (3.8.9), 

short wave disturbances, which will be excited in any numerical 

calculation, will be amplified. A possible remedy to the situation is 

to obtain a higher order correction than 0(s) to the governing equation; 

hopefully this would suppress the spurious behaviour. The matter is 

pursued in the next chapter. 
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§9 An interpretation of equation of motion (3.5.19)  

A simple interpretation of the modified Birkhoff equation (3.5.19) 

can be given as follows. 

Consider an element of the layer with local radius of curvature 

p(s), where s (defined below) is associated with the particular element 

chosen, and let Q(s) be the local centre of curvature. Let P(s) be 

the centroid of the vorticity distribution m(s,y) in the element. 

The surfaces AC and BD (see Fig. 3.1) are chosen so that the vorticity 

there is effectively zero; this is always possible in view of the 

exponential decay of vorticity (cf (3.3.1)) as QP is traversed away 

from P. Let the distance from P to AC, and from P to BD measured along 

QP be S_ respectively. The element is assumed to have length ds (see 

the figure); s being identified with the arc-distance measured along 

the line joining the centroid of each element. 

If y is the distance, measured along QP, from P, then 

I wydy = 0 (3.9.1) 

Suppose the jump in the tangential velocity across the element is -y(s). 

Then for flow at great distances from P, the element can be represented 

by a point vortex of strength y(s)ds at P. If in a coordinate frame 

fixed with respect to flow at infinity the position of P is given by 

x = R(s) 

then in the absence of any distribution of vorticity 

(i.e. if we have a vortex sheet), 

8R 

8t 
(5) = VO  = (U0, VO) (3.9.2) 

where VV is the velocity induced by the other elements of the layer 

together with the velocity with which P is convected along the sheet. 
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(3.9.2) is essentially Birkhoff's equation (3.1.1). 

Suppose that when the vorticity is distributed in a layer, the 

velocity contribution from all the other elements of the layer to the 

element at s can be regarded as due to an appropriate distribution of 

point vortices. Then the distribution of vorticity in the element at s 

will give rise to an extra velocity at P(s), given by 

aR 
(U1,V1) = at - (U0, V0) (3.9.3) 

It is asserted that the existence of this extra velocity produces a 

force on the element given by the Kutta lift and the local pressure 

gradient, 

y-ds(U1,V1) A k - cis( 	, 0) _ (F,G).ds (3.9.4) 

assuming that the fluid has unit density and that the pressure ") remains 

sensibly constant across the layer (see below). Then, provided (F,G) 

and 	can be found, (U
P  V1 

 is determined. 

If the fluid velocity in the neighbourhood of P is (u,v) relative 

to (U0,V
0
) and if u -} u0  (s) as y -> -o, then, since the jump in tangential 

velocity across the layer is -y(s), u -. -y(s) + u0  (s)as y +m. 

Assuming that l ast « 
ay 

I, (u,v) satisfies the curved boundary layer 
y  d 

type equations (which to 0(p) are of course the same as that for a flat 

boundary layer). To 0( ±) the pressure in the layer is constant so that 
A 

au 	au 2 - a 	- 	0 + 1 	0 = 8 (-y+u) + 1 a ( - y+u )2 	(3.9.5) ās - at 	2 as 	at 	0 	2 as 	0 

so that 

ay 

at + as 
(y(-1/2 y + u0)) = 0 (3.9.6) 

which is the circulation density equation (cf. (3.4.10)). 
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For simplicity let u0  =- 0, so that 22  = 0. Then, using the Kārmān 
DS- 

type argument (Goldstein, p.131), it can be shown that the total rate 

of change of momentum in the tangential direction inside ACDB, considered 

as a fixed surface, is given by 

[ f+ 
Du 4.  8 	f u(y+u)dy - ay  f udy ] ds- _a  at 	as _o 	az s (3.9.7) 

This must be equated to F since the viscous forces give zero contribution. 

Y. _ 
Since u0  - 0 and u = -A = f w dy, 	approximately, integrating the first 

_C 

and the last terms in (3.9.7) by parts and using (3.9.6) it can be 

shown that these terms cancel. Hence, from (3.9.4) and using sa—g = 0, 
CO 

V1  = - 
Y as f A(y-0)dy (3.9.8) 

In order to contain the momentum flux in the tangential direction 

and maintain the inward mass flux from BD in circular motion at tangential 
CO 

speed -y, i.e. a net momentum flux, -ds f A(y-A)dy, a force 
-„ 

ds f A(y-A)dy 
_„ 

 

(3.9.9) 

 

A 

is required to act upon the ekēwmevi'  along Eg.. This is provided by G 

so that from (3.9.4) , we have 

03 

Ul  = 
yp 

f A(y-A)dy  (3.9.10) 

Both (3.9.8) and (3.9.10) are in agreement with the corresponding values 

in (3.5.17). It may be noted that the curvature affects only the 

tangential velocity whereas the net change in momentum flux along the 

tangent affects only the normal velocity. 
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APPENDIX A: Matching 0(e) terms proportional to y 

For consistency, terms of 0(e) which are proportional to y in 

the outer solution (3.4.8) must be matched with those in (3.5.4). 

Thus it is required that 

aQ - 	u 	au 
iela 8Z±  = (Sl0 + —p0 — 1 y - 1 x + 1 ax

0)e—ia 
(A3.1) 

and 

. .a aQ- 	u0 	au 
l 	

+ 	

0 
e 

DZ 	~0 	p + 1 ax (A3.2) 

Since Q+ is analytic, it can be differentiated in any direction so that 

aQ+ __ -ia DQ + 
aZ e ax 

Then from (3.4.9) and (3.5.8) 

ax+ = 
aari  

+ e 1a āx (- Y + u0) + i(y - u0) ax e-ia 

and since 

az* _ —ia 	aa __ 	aa __ 1 

ax e 	
at n0' ax p ' 

(A3.3) 

(A3.4) 

(A3.5) 

aQ 
= - e 	+ e ., -la 	ia au0 aY +i Y u0 

(ax — 	— 
0 	ax 	(p 	p )) (A3.6) ax 

Multiplying (A3.6) by i and using (A3.3), it follows that the left 

hand side of (A3.1) agrees with the right hand side. 

Similarly, (A3.2) is also true. 
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APPENDIX B: Energy equation 

62, as defined in (3.5.22), can be shown to satisfy the boundary 

layer type energy equation as follows. 

Multiplying equation (3.6.3) by Y  and integrating across the 

layer gives 

2  au 	_ 
āt j yA  as f 2  + aso jYA+ u0 asfy + [YAv] 

{a  
ū 
 āj A -ā A2} 	 o

+
o (B3.1) 

after an integration by parts and using (3.3.1) and (3.3.14). The 

integrals in (B3.1) are with respect to n and extend across the vortex 

layer. [ ] denote jump in value across the layer. 

Similarly, on multiplying (3.6.3) by A and integrating across 

the layer gives 

3au 	— 	 _ co 

ātj A2  asj 
 A3 

 + as0  j 
A2 
 + u0 as) 

A2 + [A2v] = —2v f w2dn 

(B3.2) 

On subtracting (B3.2) from (B3.1) and using the circulation density 

equation (3.4.10), gives 

_ 	 3au 	a 
at j A(y-A)dn + u0 as j 

A(y-A)dn 
+ as0  j A(y—A)dn — 

ay j A(y—A)dn 
—o 	—o 

o 

_o, 

_a 
as f A2(y-A)dn = 233 f 

w2dn 
_W 	_m 

(B3.3) 

or introducing 62 and writing in terms of r,t variables 

j w2dn (B3.4) 
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where the equation for circulation density has been used to eliminate 
3u0  
8s and where S3  is given by 

2 

U2 
(1 - Ū) dn 

S3  corresponds to the energy thickness of the boundary layer theory. 
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APPENDIX C: Modification to Kirchoff's invariant  

A modification to Kirchoff's invariant for a vortex sheet to allow 

for a uniform distribution in a layer of small thickness was obtained 

in (M). This is extended here to the case of a non-uniform vorticity 

distribution. 

For a vortex sheet, Kirchoff's invariant is 

r 	r 

0 = - 8° f 	j loglz(r,t) - z(r',t)Idrdr' 	(C3.1) 

where p0 is the density of the fluid. 

A short calculation shows that 

r 	re dw0 	?0 
[Re f 

az (F,t) { f 	dr' 
z(r,t)-s(r - - 	

}drs 	(c3.2) dt 	27 0 at 	0 	
',t) 

Then from (3.5.19) and (3.5.21), 

N 	 r 
dW0 	Po 	

e 	
az a$* - 	as a 	3 as* 	2 

dt 	27 Re 	0 (2rz at at 	2r at ar (a 2u ad ' 
) + o(e ))dr 

(c3 .3) 

where 62(r,t) is as in (3.5.21). The first term in the integrand, being 

pure imaginary, gives no contribution so that, integrating by parts, 

r 
dW0 	PO 

e 	3 as* als 	a 2* 	2 
dt = - ī ō a2u (ar arat + g 

a 
ār 

$arat)dr + o(e ) 	(C3.4) 

and since 

2 	az az* -1 
U= (ār ar ) 

r 
P 

	DU 
dto - 2 I aŪ at2 dr + 0(c2) 

0 

r 

ī~ f at (a2 u) — U2 3t (--U )}dr + 0(c2) 
0 

(C3.5) 

0 0 
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The second term in the integrand in (C3.5) can be eliminated by 

using (B3.4) to give 

r 	r e 	 e 	m _ 
d 
dt (W0  - 2 f 	US2d r) = - u f (Ū f w2dn)dr + 0(E2) (C3.6) 

0 	0 -m 

where u = pOv . 



with 

K(y,y1) = 2W(y) 
w2 	w1 2 

(wl-w(y1)) 
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APPENDIX D: Solution of integral equation for A of §7 

Equation (3.7.7) can be written 

d 1 	_ 2w' co (wī w) 	w1 (w-w2 yw') 
dy (w ! ~_) 	2 f w 

-w 0_dy 	
2 	2 	 (a + a-) 	(D3..1) 

w -o 141-w2 	w 

so that 

(w -w) 	w1 	y (w-w yw') 

	

A_ = 
2,
w f 

w 
lw  

A_(y1)dy1 + 2 (a+ + a_) 8 [w 	f 	22 	] (D3.2) 
2 -c 1 2 	 Y 	w 

- (D3.2) is of the form 

CO 

A_(Y) = f K(Y,Y1)a_(y1)dyl + G(y) 	 (D3.3) 

and 

* 	2 	
Y w-w2 yw' 

G(y) = wl(a+ + a_)- y [w f 	2 	dy] 
2. 

Then K(y,y1) is degenerate and so if 

R1 = f (wl-w(yl))~_(yl)dy 
-co 

multiplying (D3.3) by w1-w(y) and integrating with respect to y gives 

CO 	 CO 

S1 
w

(1 - 2w f w'(wl-w)dy) = f (w1-w(y))G(y)dy 
1 2 	-00 

Hence, 

CO 

o_(y) 
 = G(y) + (w -w )(2w -w ) f (w1-w(y))G(y)dy 

1 2 2 
 I, 

(D3.4) 

w 
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CHAPTER 4: HIGHER ORDER APPROXIMATION TO THE EQUATION 
OF MOTION OF A VORTEX LAYER  

§1 Introduction 

The equation of motion of a vortex layer derived in Chapter 3 is 

valid provided the thickness of the layer is small compared with the 

radius of curvature of the centroid line. Thus (3.5.19) describes the 

motion of long waves on a vortex layer fairly well. It might be thought 

that with a suitable choice of vorticity distribution (e.g. uniform 

vorticity in a thin layer), (3.5.19) can be integrated numerically to 

study the evolution of such waves. However, in any numerical calculation 

short wave disturbances are bound to be excited numerically and it is 

necessary to determine the behaviour of these disturbances. The 

situation is similar to that of Kortweg-de Vries equation (Benjamin, 

et al. 1972) which is asymptotically valid for long waves, but which 

displays a spurious instability for short waves. 

In the case of a non-viscous uniform vortex layer, Moore (1978; (M)) 

has used the modified equation corresponding to (3.5.19) to consider 

sinusoidal disturbances to an initially straight layer and has obtained 

the growth rate of such disturbances. This reveals that short waves 

are strongly amplified. From the analysis of Ch. 3, §8, it would 

appear that the same would be true in the case of a non-uniform vorticity 

distribution. Thus any numerical work involving the equation (3.5.19) 

would be faced with a serious difficulty. 

From Moore's analysis it is apparent that the difficulty is purely 

an artefact of the truncation in the expansion in c, made by neglecting 

terms of 0(62). Hence a possible remedy is to obtain a higher order 

approximation to the governing equation in the hope that this would 

give a suitable growth rate for disturbances to the solutions of the 
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governing equation. This is pursued in the following sections of this 

chapter. For simplicity, the analysis is restricted to the case of a 

non-viscous vortex layer of uniform vorticity and finite thickness. 

Thus in this chapter the matching achieved in (M) is extended to include 

higher order terms; in fact, terms up to 0(63) are included in the 

analysis. 

The inner and outer solutions to 0(63) are obtained in §2 and §3 

respectively and are matched in §4 to obtain the equation of motion. 

The higher order terms are checked against known solutions of the 

equation. 

In §5, the derived equation is used to obtain the growth rate of 

sinusoidal perturbations to an initially straight uniform vortex layer. 

The results, unfortunately, are discouraging; while for long waves, for 

which the governing equation is valid, the growth rate is in good 

agreement with Rayleigh's (1896, p.342) exact result, short waves are 

still strongly amplified. Hence the numerical difficulty mentioned 

above is not resolved by obtaining the equation of motion to a higher 

degree of approximation. 
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§2 The inner flow to 0(e3)  

Let C be the plane curve defined in Ch. 3, §2. For a layer of 

constant vorticity, C is identified with the centre line of the vortex 

layer. Thus in terms of the intrinsic coordinates (s,n) of Chapter 3, 

based on C, the non-viscous vorticity distribution can be expressed as 

0 	-H(s,t) < n < H(s,t) 

w(s,n,t) = 	 (4.2.1) 
0 otherwise 

where n = ±H(s,t) are the boundaries C+  and C_ of the layer and w0  

is a constant. In order to express (4.2.1) in terms of the inner 

variables x,y introduced in Ch. 3, §3, we write H = al  and WO  = w/e. 

In this section, the components u and v of fluid velocity in the 

(s,n) frame are determined to 0(e3) for the constant vorticity case. 

More precisely, in the notation of Ch. 3 §3, terms up to u3  and v3  in 

the expansions (3.3.5) are determined for ;given by (4.2.1). The 

approximation to u is then used to obtain the convection speed Uc  

to 0(e3). 

The boundary conditions at y = ±o are to be replaced by those at 

C+  and C_. Firstly, since u, the fluid velocity in a coordinate 

frame OXY fixed with respect to flow at infinity, is continuous across 

C+  and C_, it follows from (3.2.7) that u and v also are to be continuous 

across these curves. 

Secondly, a kinematic condition is to be satisfied at each 

boundary. This can be shown (M §2) to be 

v(s,H,t) = aH + (1 — H)-1 u(s,H,t) aH  at 	as 
(4.2.2) 
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at C+  and 

-v(s,-H,t) = 8t + (1 + p)-1  u(s,-H,t) as (4.2.3) 

at C_. 
aR 

For consistency with the expansions (3.3.4) for — and angular 

speed SZ(s,t) and (3.3.5) for u and v, the unknown time derivative 
at 

must also be expanded in terms of E. Thus 

aH 

āt = Eatl  = c(H1(x,t) + ell2(x,t) + c2f13(x,t) + ...) 	(4.2.4) 

Then with m as in (4.2.1), the set of equations (3.3.7), obtained 

from the kinematic vorticity equation, together with the above boundary 

conditions can be used to give u0,u1,u2,u3,.... 	Thus from the first 

two equations of the set u0  and ul  can be determined. These are given 

by (M (2.19), (2.20)); note that in (M) uo, ul  (called A in (M)) refer 

to values of u0, ul  at y = 0 and therefore differ from u0, ul  as used 

in Ch. 3. For consistency, Moore's definition of these quantities will 

be used from henceforth. 

If u0,  u1  and v1  (M (2.23), (2.28)) are substituted from (M) into 

the third equation of the set (3.3.7) and the equation integrated, then 

a2H
1  2-w-97caH 

	_ 
+ p2[-7E 	2+'H12y] + 2 ax2  y 	( H1 57c-)Y+ u2+(x,t)  y > H1 

3 
+ 2p2 + u2 	H1  > y > -H1 	(4.2.5) 

a2H 	aH 
+ 
p2[Hly2 

+ l2yl — 2 a  21y2  - w āx(H1 axl)y + ū2-(x,t) y < -Hi  

where 

2- 	- y2 
J = 2SZ1y + 

P 
(%y2  + uly) - 

a 
 2 y2  - w 3x (H1 axl)y  + u02 ax 	p 



v2_(x,t) = v2(x,t) - 8x ( 61 P 

wA 3 
(4.2.8) 
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and u
2, u2+ 

and u2- are independent of y. Since u2 is required to be 

continuous across the boundaries C+ and C_, we must have  

3 

(4.2.6) 

a2 011 
u2_ = u2 - 

8x2 
( 6 ) 

u2(x,t) is arbitrary and is to be determined by matching. 

From the second of the equations (3.2.6), after substituting 

for u0, u
1 
and v1 from (M) and integrating, we have 

8A 	 wx 	wH 2 
 ■ 

P 8x1("2 
-Hy) + 	8x ( pl)y2 

	
2 8x ( p )y + v2+(x,t) Y > Hl 

 (p)y3 -6-0 	+ v2(x,t) 	1 > y > - 
1 

w 
3H

1, 
	wH 	c~H 	_ 

P 8x"2 + H1") 	2 
1 
 8x (pl)y2 	2 ax ( p )y + v2—(x,t) Y<—Hi 

where 

= - 
1 8 	u0 2 

- 
1 

ōu0 2 uH1 8H1 	8u1 
K 	2 8x (~0 + p )y 	p 8x " 	p 8x " 8x " 

and v2+, v2 and v2_ are to be determined. For v2 to be continuous 

across y = ±H1 we must have 

wH 3 
v2+(x,t) = v2(x,t) + aX ( 6p 

_ - a2 1 
u2+ = u2 + ax2 ( 6 ) 

3 

2 

(4.2.7) 

v2 will now be determined from the kinematic boundary condition 

which has to be satisfied. Expanding the kinematic condition (4.2.2) 

at C+ and condition (4.2.3) at C_ in terms of e and equating coefficients 

of powers of a to zero leads, respectively, to the sets 



a  _ wH1  
2 + ax (H1[ul 	6P 
	= 0 

2 

(4.2.11) 
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DH l  
= H1  + u0(x,±H1,t)  ax 

 

Hl  BH l  
± v2(x,±H1,t) = H2  + [ul(x,±H1,t) ± u0(x,±H1,t) p ] ax 

	

Hl 	H l  
± v3(x,±H1,t) = H3  + [u2(x,±H1,t) ± ul(x,±H1,t) 1 	+ u (x,±H ,t) 	]- - 	p 	o 	1 P2 ax 

• • • (4.2.9) 

On substituting for u0, ul  and v2  into the second pair of equations 

of the set (4.2.9), it is found that these are satisfied provided 

2 

v2  = 2H1 
ax

1(S20  + 
p ) + 

H2 

 [ ax ( 
n

0 + p ) + P ax 
(4.2.10) 

and 

Equation (4.2.11) can also be obtained by expanding the circulation 

density equation and equating coefficient of e2  to zero; this serves 

as a check on the algebra. 

The expressions (4.2.5) and (4.2.7) for u2  and v2  can be substituted 

into the sets (3.3.7), (3.2.6) to obtain u3  and v3. Then, after applying 

the boundary conditions, the final results can be written as 

u3  = 

+ wL3y3  - wL2y2  + wLly + u3+(x,t) 

2 	4 
+ W 	(1)y4  - 

3 + ū (x,t) 24 ax2 p 	2P 	3 

- wL3y3  - wL2y2  - wLly + u3_(x,t) 

y > H
1  

H1  > y >-H1 	(4.2.12) 

y < -H1 
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y2 y  u- y 
 8/7  where Jl  = 222y 	P + f ax  + p  + ax2 y 	p 

a 2H 3 	H 3 	 aZH 	 aA 	H 2 	H 
L=  1 	1 + a ( 1  ) L=  1 	1 +  2 a (1) 	1 +  l  a  (1) 

- 
1 

1 	6p ax2 	ax. 6p 	3 	p ax2 	3 8x p ax 	6 ax2 p 	p3 

	

a2H 2 	aH
2 	H 2  2 	H 2  

L = 1 	1  +3 	1 a (1)+ 1 8 	(1)- 1  2 P ax2 	4 ax ax P 	4 ax2 p 	2p3  

and 113+(x,t) are given by 

u3+(x,t) = u3  

	

3 	4 

	

wH
1
3 	a 	1 _ wHl 92 1 

6 ax 8x (p ) 	24 ax2 
(p ) ' (4.2.13) 

u3- being arbitrary. Thus 113+  = u3_. v3  is given by 

	

1  + wM3y3  - wM2y2  + wMly + v3+(x,t) 	y > H1  

v3 	1  1 + 12p ax 
( p )y4 

+ v3(x,t) 	H1  > y >-H1  

	

- wM3y3  - wM2y2  - wM1y + v3_(x,t) 	y < -H1  

(4.2.14) 

where 
a 

R =all L-+ 	_ a 	y 	4.  vg  8112
1 ax 2 	p 

	I.L.T.  ax 	p 	ax y 

3 

= 1 
a Al _  1 a3 	3 	_  5 H1 8H1 +  H1 	(1)  _ 1 a2 (H aH1)  

M1 6p ax ( p ) 6 ax3  H1 	
M2 2 p2 ax 	p ax p 	2 ax2  1 ax 
3 

__ 5 aH1 7 H1 a 1 	1 8  H1 
M3 	

6P
2 ax + 6 p Px (p) 	6 ax3 

The boundary conditions at y = ±H1  imply that 
2 	 2 3 

v 

- 

= v = v + 
"111.2p"11  H1  ( 	a (1) - 10 aH1)  + H1  a  H1 + 

3+ 	3- 	3 	ax p 	p ax 	6 8x3  

+  2  3H1  aH1  a H1  + 
(
911

1)33  2 ax ax2 	ax 
(4.2.15) 
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and that 

	

e H13 	u0 _ H13 a2u0 
3 + 8x (3P (~0 + P ) 	6 

8x2 + u
2H1) = 0 

2 

	

v3 ++v3-_ 
H1 

8 	
ul 	8H1 	ul 	ftl 8u1 

2 	2 8x (H1+ —) + 2H1 8x (g21+ --) + — 
	— wH x 

	

p 	p 	p 8x 	1 

	

X [ 
5H2 3H1 + H12 

a3H1+ 
H13 a (1 	

H 
828l 8H1 

	

2 8x 	3 	3 	3p ax p) 	1 	2 8x ] 

	

6p 	8x 	8x 

(4.2.16) 

(4.2.17) 

Equation (4.2.16) again serves as a check on the algebra since it can 

be obtained by expanding the circulation density equation (see expression 

for Uc below) 

Finally, the convection speed, defined by 

H

1 	

H

l Uc = 2H j udy - 
2H 

j (u0+su1+c2u2+£3u3+ ...) dy 1 —H1 	1 -H1 

can be calculated to 0(e3). Substituting for u. (i = 0,1,2,3) and 

integrating gives 

2 	2 	— 	2— 	 2 
U = u0 £[u - wH1] + c2[u + -- --- + u0 — . 	

N. + E3[u + Hl(SZ + 
ul 

 0 	1 6p 	2 3 p p2 ax2 	3 3p 1 p 

H2 82u 	H 2 2 	H 2 	8H 	H 	8H 
1 	1+ wH2( 1 8 (1) _ 1 	1 8 (H 	1) - 1 8 (1) 1] 
6 

Bx 	
1 120 8x2 P 	10p3 	2P 8x 1 8x 	6 ax p ax 

(4.2.18) 



i a(t) 5cu0H5(s',t)I4(s',t)ds' -- J 	 
2n 	0 	z-Z(s' ,t) 	

+.... 

.meima 
I (s,t) _ m 	

(z-Z)m  P(z-Z)
m-1  

.m-1 (m-1)ia 
i e 

(4.3.3) 
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§3 The outer solution to 0(c3)  

From (3.4.4), in view of the vorticity distribution (4.2.1), the 

complex velocity at z, a point exterior to the layer, is given by 

(after a re-arrangement), 

• 

i a(t)
ds' 	H 	n' 	.ieia'n'  -1 

q(z,t) = - 21r p 	z-Z (s',t) JH 
w0  (1 - p(s' ,t))(1 	z-Z(s',t,)) dn'  

(4.3.1) 

where Z and a' are as in Ch. 3, §4. 

The integrand in the inner integral can be expanded in terms of 

powers of n (see M (3.5)-(3.9)) and term-by-term integration carried 

out so that, since odd powers of n integrate to zero, we have 

a(f) 2w0H(s',t)ds' - i  a(t) 3w0H3(s',t)I2(s',t)ds' 
q(z,t) = - 2Tr 	0 	z-Z (s',t) 	2n 0 	z-Z(s',t) 

(4.3.2) 

where 

Let z be given by 

z = Z(s,t) + ineia 	 (4.3.4) 

As noted in Ch. 3, §4 the integrals on the right hand side of (4.3.2) 

remain bounded as z -} Z(s,t), a point on the centre-line. Thus, 

uniformly in z, the outer solution, in terms of the inner variables, is 

i a(t) 	
ydx' 	 ie2 a(t) 

	4YH12I2dx'H q(z,t) _ - 	f 	 - 	f 
271. 0 

Z(x,t)+icyela-Z(X f,t) 21T  0 Z(X,t)+iEyela-Z(X I ,t) 

+ 0(c4) 
	

(4.3.5) 
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where H(s,t) = eH1(s,t) is written and the fact that the circulation 

density y(s,t) as defined in Ch. 3 is given by y(s,t) = 2w0H is used. 

In (4.3.5) the integral proportional to c3 is zero since the 

distribution of vorticity is symmetrical about the centre-line. In 

the case of a general distribution of vorticity this would be no longer 

so and the integral has to be considered in order to evaluate the third 

order approximation. 

The inner limit of the outer solution is now sought. Let 

(0) i a(t) 	y(x',t)dx' 	) Q+ (Z,t) = lim (-  
y-30± 	2~ 	

0 Z(x,t)+ieye
la 

Z(x',t) 

(2) 	i a(t) 3 'yH12I2dx'  

	

Q+ (Z,t) = lim (- 
2~ 	f 	ia 	) 

y40+ 	0 Z(x,t)+ieye -Z(x',t) 

Then from (M(4.5),(4.6)), Q+0)(Z,t) is given by 

(4.3.6) 

(4.3.7 ) 

Q+o)(z,t) = 
. a(t) 
1 T Y(x' t)dx' 	- 	-ia 
2r 0 Z(x,t)-Z(x',t) 	

zY(x,t)e (4.3.8) 

where the slash denotes Cauchy principal value integral. 

Now on substituting for 12 in the integral in (4.3.7) and noting 

that 8x = e
ta
, the term in ( ) becomes 

2 

i 	
YH12ela'

dZ' 	iy Hp dZ' 
(4.3.9) 

C (z-Z')3 	C (z-Z')2 

where z is as in (4.3.4) and C is the centre-line. For z,Z real and z 

on the path of the integration, Mangler (1952) has defined principal 

values for integrals of the type appearing in (4.3.9). However, here it 

is convenient to proceed in the following manner. 
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Define 
H 

iYH tela 	-Y 1 

6w 
 g(Z)   = 	6w 

2 

 

f(Z) _ 

 

(4.3.10) 

 

f(Z) and g(Z) are analytic and 

f''(Z)=eia
a (_ lYAl~ia 	i 	2 ~+

; 3 
ax 	67r 	) 	24,~W2{3Y 8x 	p 1 

i H 
2ia 

f"(Z)=eiaa 	-ia ā 	Y 1 
e 	

= 
aX (e 
	

ax( 	6w 	) ) 

ia 	2 	3 ie 
2 { 

a 
2 Y + 3 i ax(p ) ) 24741 ax 

where y = 2wH1 is used. Similarly, 

3 
g' (Z) = - 	1 2 ax (p ) 247rw 

Note that since y(x,t) is assumed to vanish at the ends x = 0, x = a(t) 

(Ch. 3, §1), f, g, f', f" and g' also vanish there. Also g" vanishes 

at the ends while f"' will vanish there provided 
ax
21 

 
does; this will be 

assumed to be so. Then (4.3.9) can be written 

j (  f(Z) + g(Z) )dZ = j (- . (1/2f(Z)  + g(Z)) + 'kf'(Z) + g'(Z))dZ 
C (Z-z)3 	(Z-z)2 	C 	dZ 

(Z-z)2 	
Z-z 	

(Z-z)2 	Z-z 

_ _[  f(Z)  + g(Z)1 	+ f (WU)+ g'(Z))dz 
2(Z-z)2 Z-z ends C (Z-z)2 Z-z 

The term [ ] is, uniformly in z, equal to zero since f, f"'(Z) and g, 

g"(Z) vanish at the ends. Then 

j (  f'(Z) + g'(z))dZ - j { d Of'(Z)) + 'kf"(Z) + g'(Z)) dZ 
C (Z-z)2 Z-z 	dZ 

(Z-z) 	
Z-z 

_ [ kf.' (Z) ] 	
+ j 
w(Z) + g' (Z) dZ 

Z-z ends C 	Z-z 

2 



-ia 
a 
2 

2 	
yH
1 
 

± 
12 ax

2 (Ygl ) — . ax ( p )} 
ax 

2 

(4.3.13) 
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Again the term [ ] is, uniformly in z, equal to zero since f', f"(Z) 

vanish at the ends. Thus 

Q(2)(Z) = 	lim 	
f kf"(Z) + 

gt(z) dZ 

	

4.
--z}Z 	C 	

Z-z 

from±side 
of C 

(4.3.11) 

From the Plemelj formulae (Mushkelishvili (1958), p.42), we have 

	

(1
(2)

(z) = f 	
f"(z')+ g'(Z') dZ' + 

ri{ f''(Z) + g'(Z)} 

	

C 	Z -Z 	2 (4.3.12) 

On substituting for f" and g', (4.3.12) becomes 

121.
f 

a(t) a2
+ 
(Y(x')H

1 
(x')2) - i a,(Y(x')Hr2(xl)) (2) 	

12 
 = 12 	ax 	

ax' 	p(x ) 

0 	Z(x,t) - z(x',t) 
dx' 

Then the inner limit of the outer solution is given by 

(0) 	 (0) 

	

q(z,t) = Q+O) + iey aQ
± 	

+ s2(Q(2) - 
(yel7)2 a2Q± ) 

	

az 	2. 	az2 

aQ(2) 	ia 3 a3Q~(0) 
+ iE3(yela 	

az 	
(y3

t 	
) 	3 )  + 0(e4) 	(4.3.14) 

according as z -} Z from ± side of C respectively. 

In the next section (4.3.14) is matched with the outer limit of 

the inner solution. 

az 
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§4 Matching  

Introducing the expansion (3.5.3) for 
a
t into (3.5.2), the 

inner velocity, in complex notation, for points z exterior to the 

layer is given by 

gI(z,t) =n* + u0e-ia + c 1Ii + (u
1
-ivl)e ia - y~0e-ia} 

2 	( 	
ia  	-ia + e {22 + u2iv2) 	- 	c n3 + (u3-iv3)e -  5622e-ia} 

+ 0(c4) 
	

(4.4.1) 

where ui and vi are evaluated at y > H1 or y ti -H1 according as z 

is on ± side of C. Then (4.4.1) constitutes the outer limit of the 

inner solution and must coincide with (4.3.14) as c -► 0 with y fixed. 

The 0(1) and 0(c) terms can be matched to obtain U ,jji. These 

are given by (M (4.7), (4.12)). 

Matching of the 0(c2) terms which are independent of y requires that 

II2 + (u2+ - iv2+)ē ia = Q(2) (4.4.2) 

where u2+ and v2+ are given by (4.2.6) and (4.2.8) respectively. On 

a2 

-ia 	i a(t) (ax ~2(YH12) 	1 ax,( 
pl 

))dx' 
R2 + (u2 - iv 2)e 	- 127 

I 	
Z(x,t) - Z(x' ,t) 

On subtracting the two equations (4.4.2) 

_ 	_ 	2 wH 3 	wH 3 
(u2+ u2-) - i(v2+- _ 2-) = 2(āx2( 6 ) i ā( 6p )) (4.4.4) 

in agreement with (4.2.6), (4.2.8). Matching of terms proportional to y 

and y2 reveal no new information but is accomplished in Appendix A for 

adding the two equations (4.4.2) and substituting for Q+2) from (4.3.13), 
2 

(4.4.3) 

consistency. 
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Similarly, matching of 0(c3) terms independent of y require that 

	

* 	u3+ + u3- 	v3+  + v3- -ia 

	

I13 	( 	2 	2 	)e  0 	(4.4.5) 

and that 

u3+ 	u3- 
(4.4.6) 

v3+ 	v3-  

Equations (4.4.6) are in agreement with (4.2.13) and (4.2.15). 

Hence, in view of expansion (3.5.3), 

3Z* 	— 	(ul++ul-) 	(vl++vl-) 	2 -  
8t + Eu0+E( 	2 	

- i 	
2 	) + e (u2 iv2) 

+ 3(u3 	+2u3 
- i ( 3+2v3 ))]e-ia = I + e2N  + 0(e4) 

(4.4 .7 ) 

where 

I 

and 

N - 

= - i a(t)  y(x,t)dx'  
27r 	t Z(x,t) - Z(x',t) 

2 	3 

a(t) 
( a  2(y3) - i aX,(p ))dx'  

i (0  

48nw2  0 	Z(x,t) - Z(x',t) 

(4.4.8) 

It is convenient to introduce the convection velocity Uc  given by 

(4.2.18). 

Thus, on substituting for the 0(c) term in (4.4.7) from M (4.13), 

and using (4.2.6), (4.2.8), (4.2.13) and (4.2.17), (4.4.7) can be written, 

az* -ia 	-ia 2 	-ia 3 -ia 4 
at + Uce 	= I + cPle 	+ e (N + P2e 	) + c3 	+ 0(e ) 	(4.4.9) 



axat S2 = ieia a?z 
(4.4.11) 

or 

SZO + 
u
0 = ie ax - ax - P ax 

(4.4.12) 

where 

P = - 	(AC +imm) 1 	2w 3p 	ax 

u 	a2u 	u 	au 
P2 — 4~2 I3 (p (n0 	+ p ) 2 ax2) + 	i (2(St0 + 

P 	 ) + p ax0 

u 

+ 2 ax (n0 + p ))] 

84 

2w 	
u1 

- w a2u
1 	2 2 

P3 = — I3pY(SZ1 + p ) 	3 	2 + 4 (10 
a 

2(p 8w 	ax 	ax. 

1_11) 	
u 	au 

+i{w~yaX(Stl+ +4wā (S21 + pl)+ 2wy
a 1 

Y(IX_2/ Ya~ + 	a 
(1) + a2y x )1] 

	

+
2 6p2 ax 3 ax3 3p ax p 	ax2 ax 

2 

p3 - p ax(Y ax)) 

(4.4.10) 

In (4.10) H1 = y/2w has been used. 

Now 

so that 

fi0 = ie 
3.x II0 = iela 

ax 
(I - u0e-ia) 

and 

St = ieia a R = ieia a (-e ia(u + Y — + iY ay)) 1 	ax 1 	ax 
	1 8wp 	2w ax 

or 

s + 
ūl - 1 a (Y a1) - _Y 	i(3Y ay + y_ a (1) + au

1) 1 p - 2w ax 	ax 	8wp2 	4wp ax 8w ax p 	ax 
(4.4.13) 



and 
au 

ax
= Re(elu 7) (4.4.15) 
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The expressions for n0 and R 1 have been obtained from M((4.7), (4.12)). 

On separating the real and imaginary parts in (4.4.12), we have 

g + p~ = Re(ielo ax) (4.4.14) 

Similarly, on separating the real and imaginary parts in (4.4.13) gives 

S + ul = 1 a 	_]L_ 
1 p 	2t,~ (ax (Y ax) 	4p2 ) 

ax - - 4w (pY ax 	2 ax (p)) 

(4.4.16) 

(4.4.17) 

Equations (4.4.15) and (4.4.17) could also have been obtained from the 

circulation density equation. 

If the expressions given by equations (4.4.14)-(4.4.17) are 

substituted into (4.4.9), then on using (3.5.11)-(3.5.14), (3.5.16) 

and the notation (3.5.15) the circulation coordinate r can be introduced 

and (4.4.9) can be written 

* 	P 	 P 

at 
(r ,t) = i + _ + —12 (N + P2) + 

33 
+'o(_l4) 	(4.4.18) 

wo wo 	wo 	Wo 



where 

r 

I = — 
i 

fe 	
dr'  

2x 	z(r,t) - $(r',t) 

a2u4 
+ 

a 
(U6 

a 2z 
re ar l2 	arl 	ar

s
1 

a

ar12
) dr 

1 

f 	  
0 

P1 
i a 	4 as* _ - 6 ar (U 	) ar  

P = — 1{2 8 (u4 aI) - (as
*)2 a (u6 ai*) _ u6[(a$* a2$ _ 22.2_2 21  2 *) 

2 	24 	ar 	ar 	ar 	ar 	ar 	ar ar2 	 r ar2 ar 

_ az* als* aI* ~} 
ar ar2 ar 

u as* a 	6 a as 2 fr u 2 as* a 6 a$ a
+ (u (ār u 	ar ))) + 3 u ār(u ar )ār(u ar ar(u ar ))] 

It may be noted that although the complexity of the modified equation 

has increased with the higher order matching, the evaluation of the 

higher order terms is straightforward once s and I are known; N may be 

evaluated by standard methods. 

Some checks on the correctness of the higher order terms in (4.4.18) 

are available. Firstly, the growth rate of perturbations on a straight 

uniform vortex layer is given by Rayleigh (1896, p.392) and the corres-

ponding value obtained on using the modified equation (4.4.18) must 

agree with this in the long wave limit. This is discussed in §5. 

Secondly, it can be shown that (4.4.18) is satisfied by the 

limiting form of the solution for a uniform circular vortex layer of 

thickness h0 in the limit h0/p0 small, where p0 is the radius of the 

48ir 
z(r,t) - s(ri,t) 
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centre line of the layer; the radial velocity at the centre line is 

zero while the azimuthal velocity is given by the velocity of convection 

of vorticity which can be evaluated directly from the kinematic vorticity 

equation. 

Finally, (4.4.18) can be compared with the limiting form of 

Kirchoff's (1876) solution for a rotating uniform elliptical vortex 

in the limit of a small value of the minor axis, large value of the 

contained vorticity ;and finite total circulation T0. For put 

z = -a exp(ipt)cos e, 	 (4.4.19) 

r = (r /11.)(e — ksin 20) (4.4.20) 

where 0 < e < n, a is the semi-minor axis and p is a constant, to be 

determined; u  is the rate of increase of eccentric angle of a fluid 

particle lying on a con-focal ellipse within the vortex. On noting that 

 BO a , 
ar — ār ae 

it can be shown that 

I = 
ir ē lut  
0  
na 

cos a 	 (4.4.21) 

r 
(so that with p = 02 , (4.4.19)-(4.4.20) is an exact solution of 

na 
Birkhoff's equation for a vortex sheet. See Moore (1976)), U = 2r0  sine/na 

and that 

it 
3 
e
-ipt 

N 	
03 5 
	 cos 9 	 (4.4.22) 

n a 

Substituting these into (4.4.18) and equating the coefficient of 

e  iut  cos a to zero gives 

r0 	2r0 	3r02 	4r03 	1  
U = 	2 [1 - 

2— + 2 4-2 	3 3-3 + 0( ) ] 
na 

 
waw naw new w 

(4.4.23) 
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Since b = ro naw / 	is the semi—minor axis of the elliptical vortex, 

it can be verified that (4.4.23) is an expansion in b/a of 

abw  u = 
(a + b)2  

which is the value given by Kirchoff for the rate of increase of 

eccentric angle of a fluid particle on a confocal ellipse within the 

vortex. 
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§5 Growth of long waves on a straight uniform vortex layer 

A straight uniform vortex layer of thickness h0 with velocities 

on the two sides of the layer given by ±V/2 is, in the notation of §4, 

represented by z = ry 1. Moore (M) used the modified equation (4.4.18) 

without the 0(l/w2 	w ) and 0(1/ 3) terms to consider a sinusoidal disturbance 

of spatial wavenumber k to the straight layer. Thus, in the disturbed 

state z(r,t) was taken to be 

r 	 r 
z(r,t) 	rV 1 + a(t)eik /V + b(t)e-ik /V (4.5.1) 

where a(t) and b(t) are complex-valued. The growth rate obtained was 

found to agree with Rayleigh to 0(kh0). 

Repeating Moore's analysis with the 0(1/w2) and 0(1/w3) terms 

included in (4.4.18), it can be shown that 

* 	kh 	k2h 2 	(kh )3 Da* 
 = 

i21 c[b - 30 (2b + a*) + 120 (2b+a*) 	
30 	 (3b+2a*)] (4.5.2) 

* 	kh 	k2h 2 	(kh )3 8b __ j--[a - 	0 (2a + b*) + 	0 (2a+b*) - 	0 	(3a+2b*)] (4.5.3) at 	2 	3 	12 	30 

(cf. M((5.19)-(5.20))). These equations imply that the amplitudes grow 

like eat where 

kh 	(kh )2 	(kh )3 	(kh )2 	(kh )3 
a = ~Vk[(1 - 30 + 	12 	60 

)(1 - kh0 + 	
4 

- 	12 )] 	(4.5.4) 

However, in view of the approximation leading to the governing equation 

(4.4.18), it is legitimate to retain only terms up to 0(k3h3). Thus 

k2h 2 28k3 h3 
a = ' Vk [1 - 3 kh0 + 90 135 + 0( k4  h0)] (4.5.5) 
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which agrees with Rayleigh if terms of 0(k4h4) are neglected. 

Although the theory is valid for kh « 1, it is of interest to 

consider a for finite values of kh. In Fig. 4.1, a2, as given by 

(4.5.4), is plotted against kh0  (curve (d)). The maximum growth rate 

is achieved when kh0  = 0.78 and the growth is stopped when kh0 = 1.23. 

The corresponding exact values obtained by Rayleigh are 0.80 and 1.28. 

Also included in Fig. 4.1, for the purpose of comparison, are 

plots of 
a2 
 corresponding to (i) Rayleigh's exact result (curve (a)), 

(ii) case when 0(1/w3) term in the governing equation (4.4.18) has 

been omitted from the analysis (curve (c)) and (iii) case when both 

- 
0(1/w3) and 0(1/w2) terms have been omitted (curve (b)). For small 

values of kh0  the agreement with (a) becomes better with higher degree 

of approximation. However, for large values of kh0  the three curves 

(b), (c), (d), corresponding to the different levels of approximation, 

show that a2  is positive and increases with khe. Thus short waves are 

unstable. As pointed out by Moore, this means that spurious short wave 

disturbances which will be excited in any numerical attack on the 

integro-differential equation (4.4.18) would be amplified. Thus the 

hope that inclusion of higher order terms in (4.18) would resolve the 

numerical difficulty revealed by Moore's analysis for case (iii) above 

has not been realised. 
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APPENDIX A: Completion of higher order matchin 

For consistency in 0(c2) matching, terms proportional to y and y2 

in the 0(e2) terms in (4.3.14) and (4.4.1) must be matched although the 

matching reveals no new information. 

Note that there are no terms of 0(c2) proportional to y in the 

outer solution (4.3.14). Thus the corresponding terms in (4.4.1) must 

equate to zero. Substituting for u2 and v2 into (4.4.1), the 0(c2) 

terms proportional to y are given by 

- - 	- - 

e is{2S2 	
ul± 

+ 
av1 

- 3 
(H aHl) - i v

l - auf - wH12 a 1 	2wH1 aH1 
-S2 1 + p 	ax 	ax 	1 a 	~p 	ax- 	2 	ax (p) 	p ax, 	1} 

(A4.1) 

according as y 0. However, since from (M(2.21)) 

_ 	_ 	_ 	wH1
22 

ul = ul = ul + k
+ 	- 	P 

(A4.2) 

the coefficient of y on either side of the centre line is the same, 

as it must be. On writing y = 2wH1 in (4.4.13) gives 

2 	2 
11, a 	

aHl wH1 	3wH1 9H1 wH1 
a 1 

au1 
S2 = — 1 	p + w ax (H1 ax ) — 2 - i( p 	ax + —F- -5-; (p) + u-) 	(A4.3) 

2p 

DH l 
Substituting (A4.2) and (A4.3) into (A4.1) and noting that v1 = -wH 	, 

we find that the term in { } in (A4.1) vanishes as required. 

For terms of 0(c2) proportional to y2 to match, it is required that 

e la { 0 + 
wH + u0 — ' a2u0 +_ 

82H1 
i [— ' anO — 3 ( 0 au + w aH1 ) 

p 	p2 	p 	3x 2 2 ax2 	ax 	2p ax 	ax 

_ 	2ia 
2Q(0) 

- ' 	(p)(T wH1 + u0)]} _ e2 	a 

312 a1 
(A4 .4) 

according as y O. 
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Since Q(0) and 
Q(0) 

are analytic, its derivatives can be evaluated 

in any direction. Thus 

9Q(0) 
3Q
(0) 	a2 (o) 	a2 (o) 	

a (o) -ia Q+ 	Q± 	
= e 2

1a(  Q± 	i Q 
	

) 	(A4.5) aZ 	- e 	9x, az2 	9x2 	P ax 

From M(A8), M(4.4), 

(0) 
9Q± _ia u0 311

0
aH wH 

ax 
= -ie {c0 + p + i 

ax 
- i

w 8x 	
P 

1 
- 	1} + 0(c) 

so that 

a2Q 0) 	2 u wH a  

2
-e { p + 

P2 
- 

P21 + 

ax2 (
wHl-up) - i[p 

ā
x (wHl-up) 

ax . 

a up 
wHl 

8x (S~0 + P 
- P )] } + O(c) 

(A4.6) 

(A4.7) 

On substituting (A4.6) and (A4.7) into (A4.5) we find that (A4.4) is 

satisfied. 

Similarly, it can be shown that terms of 0(e3) proportional to 

y, y2 and y3 in (4.3.14) match with the corresponding terms in (4.4.1). 



PART II: MOTION OF VORTEX FILAMENTS IN 

THREE DIMENSIONS 
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For God' s Sake 

Let us sit Upon the ground and tell sad stories 

Of vortex filaments. 

How some have been ill-posed, some singular, 

Some poisoned by their self-induction, some core 'size killed, 

some haunted by the mathematics they have involved. 

All murderous. 

For within the swirling motion that rounds the mortal circulation 

Of a vortex 

Keeps futility his court, 

And there the non-linearity sits 

Scoffing at his state and grinning at his theories 

Allowing him a breath, a little scene to linearize, compute 

and fill with approximations 

And then at last he comes and with a little inconsistency bores through 

the costly hopes and 

Farewell 	 

Shakespeare 

Richard II. Act 3 Scene 2 

( as told by Saffman and Yeun) 
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CHAPTER 5: THE EQUATION OF MOTION OF A 
THIN VORTEX FILAMENT  

§1 Introduction 

In this and subsequent chapters consideration will be given to 

the motion of thin vortex filaments. A vortex filament is considered 

to be a tube of small cross-section whose surface is composed of 

vortex lines and which is surrounded by irrotational fluid. The cross-

section of the core will be assumed to be circular to leading order, 

the radius of the core c being small compared to the local radius of 

curvature, p. Thus it is required that c/o « 1. Deformation of the 

circular cross-section as the flow evolves will be ignored throughout. 

This is justified because the self-induced strain-field to which the 

vortex is subjected is weak (see Moore & Saffman (1971)). The motion 

of the filament is then determined by tracking the axis of the filament. 

In flows in which a thin vortex filament is present, the velocity 

field at points distant from the filament does not depend on the core 

structure, and the induced flow at these points can be calculated 

using the Biot-Savart line integral (5.1.1). However, in order to do 

this, the instantaneous position of the vortex filament must be known. 

The equation for the motion of a thin vortex filament of arbitrary 

shape and internal structure has been obtained intuitively by Crow 

(1970) and rigorously justified by Moore & Saffman (1972). Since this 

equation is basic to the considerations of subsequent chapters, it is 

briefly discussed below. 

The fluid is regarded as inviscid, incompressible and of uniform 

density. The equation of motion of the filament derived by Crow is a 

statement of Helmholtz's law that in a non-viscous fluid vortex lines 

move with the fluid. Thus the motion of the filament is determined 



u(x) = r f 4n 
filament 	Ix  - X(,t)I

3  

i(E,t) A (x - X ( ,t))ds 
(5.1.1) 
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once the velocity at the vortex is established. 

In the absence of axial flow in the vortex filament, which is the 

case in the considerations of subsequent chapters, Moore & Saffman 

show that the error in Crow's equation is O(c
2/p2). 

Let x be the position vector in a fixed coordinate system and 

let a vortex filament of strength r be specified by its centre-line 

which has the parametric equation x = X(C,t). Here C  is a Lagrangian 

parameter such that E = constant represents always the same fluid 

particle and t is the time variable. Let t(E,t) denote the unit 

tangent vector and s = s(C,t) the distance along the filament. The 

velocity at X is that induced by the vorticity in the filament itself 

and by any external means such as another vortex present in the flow 

field. 

Now, at a point x exterior to the vortex filament, the velocity 

u(x) induced by the vortex is given by the Biot-Savart law as 

The integral (5.1.1) cannot be used to obtain the velocity at 

x = X(CO,t), a point on the filament itself because in deriving (5.1.1) 

it is assumed that x - z, where z  denotes the position of a point in the 

vortex core, does not vary across the vortex cross-section and this is 

no longer true in the vicinity of X(E0,t) as x 4- X(E0,t). Further, 

the integrand has a singularity at x = X (CO3  t) so that u(X (c0)) 	a j tae 

infinite. The difficulty is overcome by a suitable cut-off in the 

integral so as to make the integral finite and to allow for the internal 

structure of the filament in the vicinity of X(c),t). 

Two forms of the cut-off are described in g2 and in g3, the 

equation of motion of the filament is written down. 
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§2 The cut-off method  

Crow (1970) defined the velocity given by (5.1.1) in the limit 

R0  0,t) as 

u($(~0)) = 4r j 
t(E) A (R(E0) - x(~))ds(g) 

 [d] 	
I(Eo) - X(E)I

3 	 (5.2.1) 

where the explicit time dependence has been suppressed for convenience 

and where [d] means that an interval (s(E0)-d 	0) + d) is removed 

from the range of the integration. The integral 	is then finite and 

the velocity is given in terms of d. The length d is chosen so that 

d = Scc( O,t) (5.2.2) 

where c(E0,t) is'the core radius at 
E0 

and Sc is a constant. Sc is 

determined by evaluating the cut-off integral for the particular case 

of a circular vortex ring and comparing the velocity with the known 

exact result given by Saffman (1970). The crucial assumption is that 

the value of d depends only on the local structure of the vortex, and 

not on the geometric configuration of the filament so that the same 

value of d for a circular ring can be used for a filament of arbitrary 

shape so long as their local structures (i.e., the core size and the 

swirl and axial velocity distribution) are the same. 

Thus, using Saffman's results, 

2 c 
log 26 	= k - 4n . rv2dr 	 (5.2.3) 

r2 0 

where v is the swirl velocity in the core and there is no axial flow 

in the filament. 

Crow's cut-off method is inconvenient to use for numerical work 

because it would be difficult to remove an interval from the range of 

the line integral if the interval is not terminated by grid points of a 
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finite difference scheme. An alternate form of cut-off, which is more 

suitable for numerical work, is suggested by Moore (1972);. the cut-off 

was first used by Rosenhead (1930). The integration is carried out 

over the entire range but the denominator of the integrand in (5.1.1) 

is replaced by I(X( 	- x(g))2  + u2I3/2 o) 	
where the quantity p is given by 

u = 26Rc( 0,
t) (5.2.4) 

where 6R  is a constant. As with Crow's cut-off length,  6R  can be chosen 

by evaluating the new integral for the case of a circular vortex ring 

and comparing it with the known results. This gives 

6R  = dce 1  (5.2.5) 

where 6c  is as in (5.2.3). For a uniform vortex with no axial flow, 

i.e. with v = rr 
2rc 

(5.2.6) 

and 

(5.2.7) 
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§3 Equation of motion  

Since the fluid is non-viscous, it follows from Helmholtz's law 

that the vortex lines move with the fluid. Thus, assuming the cross-

section of the vortex filament remains circular, the equation of motion 

of the centre-line can be written, 

837( o,t) 	r 	ds' A (X-R') —  
at 	4n 	3 	+ v~(x( o),t) 	(5.3.1) 

I R-R 

where implies that one of the cut-off methods described in §2 is used 

to make the integral finite and yE(R(E0),t) is the contribution to the 

velocity at R(E~) from external sources which produce an irrotational 

field at X(E0). 

The right hand side of (5.3.1) is given in terms of d or µ 

depending on the method of cut-off used. Thus, in view of (5.2.2) or 

(5.2.4), the radius of the core c(E0,t) has to be determined before 

M/8t can be evaluated. 

In order to consider the response of a vortex filament to a 

disturbance whose amplitude is small, the core radius may be taken to 

be constant and given by its initial value; the error is of the second 

order in amplitude. However, for finite amplitude disturbances, the 

variation of the core size cannot be neglected. 

It can be shown that the disturbances which cause the area of the 

cross-section to change propagate along the filament with a much faster 

speed than the disturbances which cause the curvature of the filament 

to change. Moore & Saffman argue that the variation in cross-sectional 

area along the filament are smoothed out in a time which is short 

compared to the time it takes for the position of the filament to shift 

by a significant amount. Thus, on the time scale of the filament motion, 

I 
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the core can be regarded as being uniform along the filament, so that 

c = c( t) 	 (5.3.2) 

Moore & Saffman show that the error is 0(c2(0)), where p(E0,t) is the 

radius of curvature. The dependence on t follows from the conservation 

of volume (in the absence of diffusion). Hence 

Lc2  = constant 
	

(5.3.3) 

where L(t) is the total length of the filament; L(t) is given by 

L(t) = f ds 
filament 

(5.3.4) 

Likewise the swirl velocity v = v(r,t), where r is the radial distance 

from the centre-line of the filament is independent of position along 

the filament so that, in view of conservation of circulation, 

v = Zrr f(I) 	f(1) = 1 	(5.3.5) 

where f is determined from the initial structure of the vortex. Thus 

in (5.2.3), 

	

2 c 	1 
4n f rv2dr = f nf2(n)dn 

	

r2  0 	0 

(5.3.6) 

so that this is constant throughout the motion as required. 

Hence, once the initial structure and configuration of the vortex 

is known, its motion can be followed using (5.3.1), evaluating the cut-

off length at each time step. 

t
Leonard (1974) has considered models where the cut-off length is chosen 
so that the volume of local filament segment is conserved and also 
where the influence of viscous diffusion of vorticity is incorporated 
in the cut-off length. 
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In Chapter 6, (5.3.1) is used to study the evolution of an 

elliptic vortex ring while in Chapter 7 it is used to study the 

evolution of an infinitely long straight vortex in the presence of 

an approaching rigid sphere. 
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CHAPTER 6: THE EVOLUTION OF AN ELLIPTIC  
VORTEX RING 

gl Introduction 

There is at present considerable interest in identifying the 

mechanism responsible for destroying the trailing vortex system of 

an aircraft. The trailing vortices, made visible by the condensation 

of moisture in their cores, are observed to undergo a slow instability: 

wavy disturbances grow on both trailing vortices and reach an amplitude 

such that the vortices touch at the nearer points and break up into a 

sequence of distinct vortex rings. The form of the rings is such 

that its projection onto the plane of maximum projected area is 

roughly elliptic in shape. Once the rings have formed, the vortex 

trail soon ceases to be visible. 

The growth of waves on trailing vortices was studied analytically 

by Crow (1970) who showed that small perturbations of the vortices in 

the form of plane waves of sufficiently long wavelength are unstable. 

Later Moore (1972) followed the growth of symmetrical waves on 

trailing vortices numerically and showed that waves grow to such an 

amplitude that they touch at the nearer points. Thus an explanation 

of the observed looping process is to hand. 

The mechanism by which the vortices break up to form vortex rings 

is not understood. Nor is it clear that the rapid loss of visibility 

of the rings implies their disintegration; care must be taken in 

interpreting observations which depend on the retention of smoke particles 

or water droplets in the vortex cores. It is possible that the non- 

circular form of the vortex rings which are formed is significant to 

the observations. Thus it is of interest to know what happens to an 

initially non-circular vortex ring. 
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In this chapter an initial value problem is studied. Given a 

plane elliptic vortex ring, it is proposed to follow its subsequent 

motion and deformation numerically. It will be shown below that a 

non-circular ring must necessarily deform. 

The choice of a vortex ring of elliptic shape is also relevant to 

the study of a wake of a bird in forward flight. Photographs from 

Kokshaysky's (1979) experiments clearly show deforming vortex rings in 

the wake. The motion of the wings is such that in one complete beat 

the bird leaves behind it a vortex ring of roughly elliptic shape 

in a plane inclined at an angle to the direction of flight. Rayner 

(1979) has modelled such a wake by a chain of elliptic vortex rings 

to estimate power consumption and mean lift coefficients. He ignores 

the deformation of the rings in his calculations. 

Previous numerical study of the motion of an elliptic vortex ring 

is due to Arms and Hama (1965), who used local induction approximation 

in their calculation of the motion. This assumes that the motion of 

a thin vortex filament is governed by the approximate equations 

3X(s,t) 	b(s,t) 

8t* 	p(s,t) , 	t* 	4n ln(ē)"t 	(6.1.1) 

where b and p are respectively the local binormal and radius of curvature 

at X, a point on the filament, and s is the arc distance along the 

filament. a is taken to be an unspecified constant although a proper 

treatment of the Biot-Savart integral shows that e = c/p, where c is 

the core radius. Thus the approximation neglects the dependence of 

e on p and on any variations of the core size during the motion as well 

as the contribution to velocity from distant parts of the vortex. The 

neglect of this contribution means that the approximation loses Crow 

instability. Thus the approximation is not satisfactory if this important 

feature of the evolution of a vortex filament is not to be excluded from 

consideration. 
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The cut-off theory described in Chapter 5 provides a more accurate 

method of approach and is used in this chapter to follow the motion of 

the vortex ring. 

It may be noted from (6.1.1) that the velocity at a point on the 

vortex is approximately inversely proportional to the local curvature. 

Since the curvature varies along the length of an elliptic vortex 

ring, the velocity will vary accordingly so that the ring will deform 

from its elliptic shape as it moves. 

In §2, small perturbations of elliptic mode to a circular vortex 

ring are discussed while in §3 the numerical procedure used to integrate 

the equation of motion (5.3.1) for an elliptic vortex ring is described. 

In §4 numerical results are presented for rings of different eccentricity 

and core size. The initial size of the core used for each ellipse is 

that predicted by considering the impulsive motion, in a perfect fluid, 

of a flat elliptic disk which is then dissolved away. This method of 

fixing the core size is due to G.I. Taylor (1953) and is described in 

Appendix A. In §5 a quantitative experiment is described for observing 

the motion of an initially elliptic vortex ring and the results are 

compared with those of the numerical calculations in §6. Estimates of 

the vortex parameters are obtained in Appendix B using a simple model 

(Saffman (1978)) of the flow. 

In §7 the relevance of the results to the vortex trail of an 

aircraft is discussed. 
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§2 Linear theory  

The stability of a thin circular vortex ring to small sinusoidal 

perturbations was considered by Widnall and Sullivan (1973). In a 

coordinate system moving with the velocity of an unperturbed circular 

vortex ring V, the perturbed ring was taken to be 

X = (R + re1mA) e + zeimse 
-r 	-z 

(6.2.1) 

where er  and ez  are unit vectors in the radial and axial directions, 

9 is the azimuthal angle, R is the radius of the unperturbed ring and 

IrI, Izi « R. The wavenumber m is an integer. 

On substituting (6.2.1) into the equation of motion ((5.3.1) with 

Vset to 0) and linearizing in z and r, it was shown that for moderate 

values of m (for which it is valid to use (5.3.1)), for each m the 

ring oscillates with angular frequency ±am  (given in their paper). 

In the case m = 2, the two solutions corresponding to 
±a2  can be 

superposed to satisfy the condition that initially the perturbed 

vortex ring has a plane elliptic form. This gives 

r(t) = r0  cos(a2t),  z(t) = z0  sin (a20 (6.2.2) 

where r0  and z0  are real constants. 

Using the value of a2  as given by Widnall and Sullivan, it follows 

that the period of oscillation 2ir/a2, which depends on R and the 

internal structure of the vortex (i.e. core radius and vorticity 

distribution), is given by 

T(R,c,A) = 
2 

8n
2
R [{4(ln R  - A) + .221{3(ln  - A) + 2.23}]-' (6.2.3) 

where c is the core radius and 

2 c 
A = 

42 r rv2dr 
r 0 

(6.2.4) 
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Here v is the swirl velocity in the core and there is no axial flow 

in the filament. Note that in linearized stability theory the length 

of the vortex filament remains constant so that c must also be a 

constant. 

The self-induced mean velocity of the ring is that of the 

unperturbed circular ring, 

V(R,c,A) = 4 R (ln SR + A -) (6.2.5) 
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§3 Numerical solution of the equation of motion 

In this section the procedure for numerical integration of (5.3.1) 

for the case of an elliptic vortex ring with no external velocity field 

is described. Following Moore (1972), the method of cut-off for the 

Biot-Savart integral is chosen to be that due to Rosenhead; this was 

described in the latter part of Ch. 5, §2. 

Thus in (5.3.1), with V
4 
 = 0, the denominator in the integral is 

replaced by {IX(E0) - X(E)I 2  + u2}
3/2

, where p  is given by (5.2.4), 

and the integration is carried out over the entire range of the integral. 

The Lagrangian parameter E  is chosen so that in a fixed Cartesian 

coordinate system Oxyz, the vortex ring is initially given by 

X(E,0) = (a cos(E), b sin(E), 0) 	-n < E < r 	(6.3.1) 

where a and b are respectively the semi-major and semi-minor axes of the 

ellipse. At subsequent times E = constant always represents the same 

fluid particle. 

For time t > 0, it is assumed that the vortex ring retains its 

symmetry about x = 0 and y = 0 so that with X = (x,y,z), 

x(-r+E,t) = x(1T-E,t) _ -x(E,t) = -x(-E,t) 

y(-n+E,t) = -y(n-E,t) = -y(E,t) = y(-E,t) 	0 < E < r/2 	(6.3.2) 

z(-n+E,t) = z(n-E,t) = z(E,t) = z(-E,t) 

Hence it is only necessary to follow, say, the portion 0 < E < n/2 of 

the ring to obtain the shape of the whole ring. 

The evolution of the vortex ring can now be determined by simply 

integrating (5.3.1) forward in time and calculating the length of the 

filament at each time step to obtain the value of p(t). However, the 

integrand in the cut-off integral, although it is finite everywhere, 
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is large in the neighbourhood of 	For For near E0 (suppressing the 

explicit time-dependence for convenience), 

aM 	x( o ) - %(~) 	
ax 	a2x 

BC 
A 	

2 	
P
2
1
3/2  

ti 
(ā4)0 A( 2)0 

P(E) 
BE 

(6.3.3) 

where 0 implies that the quantities are evaluated at Co and 

P(E) — 
k(E-E

0)2 

{(E-E0)2(ā )ō + u2}3/2 

This would cause a loss of accuracy in evaluating the integral. To 

overcome this difficulty, the equation of motion is written as 

a-x 
at(~0't) 

ax 	X(c0,t) _ X(g,t) 
(at 

A 
f[x(co,t)— x( ,t)/2+u2}

3/2 

a x 	a 2 x 
- (a)0 A (--=)0 0 P(E,t)) dE 

aE 

ax 2 a x n 

47r (ā )o A ( 
2)0 J A 

aE 
(6.3.4) 

The integrand in the first integral is 0(1) everywhere while the second 

integral can be evaluated analytically. 

From (5.2.4) and (5.3.3), 

r ax 
u(t) = 26Rc0{ L fr 1 DE 

dE)-1/2 
(6.3.5) 

where L0 and c0 are the respective initial values of the length and core 

radius of the vortex ring. For an ellipse, 

LO = 4aE(e) 	 (6.3.6) 

where e is eccentricity of the ellipse, e2 = (a2-b2)/a2, and E(e) is 

the complete elliptic integral of the second kind. 
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In (6.3.5), using (5.2.5) and (6.2.4), SR  is given by 

log 2SR  = - k - A 	 (6.3.7) 

Once the values of A and c0  are given, equations (6.3.4), (6.3.5) 

and (6.3.1) completely specify the initial value problem and the 

evolution of the vortex ring can be determined numerically. The 

interval (-nor) was divided into 4(N-1) portions by 4N-3 equally spaced 

grid points. The spatial derivatives were calculated using four-point 

centred differences and Simpson's Rule was used to carry out spatial 

integration. Because of its stability, the fourth-order Runge-Kutta 

formula was used to carry out the integration forward in time. 

The calculations were carried out for four different axes 

ratios of the initial elliptic ring and the results are described in 

the next section. 
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§4 Numerical results  

The equation of motion is made dimensionless by choosing the 

semi-major axis a as the unit of length and 4na2/r as the unit of time. 

Thus the dimensionless time t1 is given by 

tl 	
4ra2 

(6.4.1) 

Before calculations can be performed, the value of A in (6.3.7) 

and the initial value of the core radius c0 are needed. These depend 

on the process of generation of the vortex ring. One method of 

generation in an ideal fluid is to give an impulse to a flat disk of 

elliptic shape and then to dissolve it away. By equating the energy 

and impulse of the disk to that of the resulting vortex ring, in the 

manner of G.I. Taylor (1953), the core size and the circulation of the 

vortex ring can be evaluated. The details are pursued in Appendix A. 

The initial distribution of potential at the edge of the disc (A6.2) 

suggests that in the core of the resulting vortex ring the appropriate 

distribution of velocity to take is 

v 
r  

2n(cr)
1/2 

w = 0 	(6.4.2) 

where v and w are respectively the azimuthal and axial velocities 

relative to the centre of the core and r is the radial distance from it. 

This implies that in (5.3.5) f = (r)~ so that 

A = 1 	 (6.4.3) 

The initial core radius is given by (A6.11). For the cases 

considered here the values are tabulated below (Table 6.1); the case 

b 
= 1 is also included. a 
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The radius of curvature p of an ellipse varies from a value b2/a 

at the major axis to a value a2/b at the minor axis. The maximum 

and minimum values of c
0 
/p are also shown in Table 6.1. These values 

b/a c0/a c0/pmax = c0a/b2 c0/pm;n 
= c~ /a2 

0.2 0.109 2.73 0.022 

0.4 0.207 1.29 0.083 

0.6 0.287 0.797 0.172 

0.8 0.347 0.542 0.278• 

1.0 0.393 0.393 0.393 

Table 6.1. Predicted core-size of vortex ring produced by 
the process described in Appendix A. 

are not small as required by the cut-off theory. However, in the absence 

of axial flow, the error in the cut-off approximation is of the same 

order in c
0 /p as in Saffman's (1970) formula for the velocity of a 

circular vortex ring. By comparing with numerical calculations of 

the full equations of motion, Fraenkel (1970) and Norbury (1973) have 

shown that Saffman's formula is fairly good for values of c
0 
/p which 

are not small compared with unity. Thus, although no rigorous proof is 

available, it is reasonable to expect that the cut-off theory will hold 

equally good for such values of c0/p. Preliminary experiments with 

smoke rings tend to support this view. 

In any case the results are not sensitive to the precise value of 

c
0 
/p since the velocity obtained from the cut-off theory depends only 

logarithmically on the cut-off length and hence the radius of the core. 

Thus as far as the motion of the centre-line of the vortex ring is 

concerned, the results obtained here are applicable, within a small 

error, to a vortex ring of the same configuration but smaller core size. 
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Only those inferences which depend directly on the core size will 

differ. 

Table 6.2 shows the values of N and time step At1  used in each of 

the cases considered. Trial and error showed that these gave adequate 

accuracy. Smaller time steps were needed with increasing eccentricity 

of the initial ellipse because of the rapid changes associated with the 

large curvature at the major axis. 

b/a N At1  

0.2 41 0.0001 

0.4 41 0.001 

0.6 41 0.001 

0.8 21 0.002 

Table 6.2. Number of points per quadrant  
and time step used. 

In view of the results of §2, it is anticipated that in the case 

of small eccentricity the vortex ring will oscillate with a period 

given by (6.2.3). As a check on the computer program, this was verified. 

In order to measure the oscillations, an amplitude B is defined and 

monitored together with the variance of the points on the ring from a 

plane parallel to the plane of the original ellipse and moving with the 

velocity of the centroid of the ring. If the vortex ring has an 

impulse I, its centroid is given by (Saffman (1970)) 

(X A t.I) 
X(t) = 2 7 	2 	X ds 

I 
(6.4.4) 
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so that for a ring which is symmetric about x = 0 and y = 0 in 

Cartesian coordinates fixed in the plane of the original ellipse, 

x(t) _ (0, 0, 2 ab 4 (x  d y  ds)z ds) (6.4.5) 

since I = rrab is conserved (this was checked by evaluating I at various 

times during the calculations). Then amplitude B is defined as 

B 
Al  - B1  

Al 
 + B1  (6.4.6) 

where 

A1(t) = maxIX(E,t) - 7(01 , 

B1(t) = minIX(,t) - x(t)I 

The variance E is defined as 

E 1 
2 ab (x 

ds y  ds)(z- z)2ds  (6.4.7) 

where z(t) = x• k. 

The values of E(t1) and B(t1) have been plotted against time in 

Fig. 6.1(a,b). Initially, when the vortex ring is flat and elliptic 

in shape, E is zero and B = a+b . Subsequently, E and B oscillate in 

time. For t1  > 0, E first achieves a minimum at a time defined as 

t1  = k TA.  Except in the case of b/a = 0.8 the value of the minimum 

is different from zero; the difference is small but not negligible. 

Thus at t1  = kTA,  the vortex ring is flat in the case b/a = 0.8 and 

nearly so in the other cases considered. The numerical calculations 

were stopped just after t1  = 'kTA. 

For the b/a = 0.8 case the shape of the centre-line of the vortex 

ring at various instants of the evolution is shown in Fig. 6.2. At 

t1  = k TA, as expected from the value of E(2TA), the vortex ring is flat. 
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It is also elliptic in shape with the orientation of its axes reversed. 

Thus in this case the vortex ring oscillates periodically since it can 

be rotated through an angle of 90°  to obtain the initial configuration. 

The time kTA is in good agreement with the half-period of oscillation 

of an equivalent perturbed circular vortex ring of radius R = 0.9a, 

given by k(r/41ra2T(0.9a, 0.347, 1)), where T is as in (6.2.3). 

In the other more eccentric cases considered, the vortex ring 

assumes complicated forms during the evolution. 

For the b/a = 0.6 and 0.4 cases, the different stages of the 

evolution are shown in Fig. 6.3 and Fig. 6.4 respectively. At t1  = STA, 

as expected from E(' A), the vortex ring is not exactly flat. Nor is 

the shape of the vortex ring elliptic, although the orientation of the 

axes is reversed as in b/a = 0.8 case. After t1  = 'STA,  the vortex 

ring starts deforming in such a way that the axes tend to attain their 

initial orientation. Thus, although the vortex ring oscillates, the 

oscillations are not periodic in these cases. Thus a flat elliptic 

vortex ring is not, in general, a periodic solution of the vortex ring 

configurations. TA  will be referred to as the "apparent period" of 

oscillation of the elliptic vortex ring. 

The different stages of evolution of the vortex ring in the case 

b/a = 0.2 are shown in Fig. 6.5. In this case, at t1  = 0.1355 (<kTA), 

the points on y = 0 are 0.214a distance apart, which implies that the 

cores are touching. Since the calculations are based on the assumption 

that the separation of such points on the vortex ring is large compared 

with the core radius, the results at this stage may be viewed with 

scepticism. However, by performing a numerical calculation with 

vortices in two-dimensions, in which the core was allowed for, Moore 

(1972) was able to show that the Biot-Savart formula gives roughly the 

correct velocity even when the cores are touching. Thus, as Moore points 
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out, it is expected that, while the cores will be distorted so that 

the cut-off length will change, the approximations on which the present 

calculations are based will be reasonably adequate even when the cores 

are close to each other. 

The relevance of the calculations to the real situation at the 

instant of touching is difficult to assess. However, experiments, due 

to Fohl & Turner (1975), with colliding vortex rings suggest that since 

the vortex cores, where they touch, have vorticity of opposite sign, 

viscous diffusion would annihilate the vorticity locally. Although the 

actual process is complicated, the net result would be that the vortex 

lines would connect on either side of the region of contact to form 

two smaller rings. 

It is not meaningful to continue with the numerical integration 

beyond the approximate instant of touching. However, in order to obtain 

an estimate of the nearest distance of approach of the core centres, it 

was decided to carry the integration forward in time as far as possible 

using the same number of points and time step. Numerical instability 

sets in near y = 0 at ti  = 0.15 when the two centre-line points on 

y = 0 are 0.014a distance apart. The instability is presumably due to 

this separation distance being small compared with the grid spacings and 

could be remedied by-  using smaller grid spacings and smaller time step. 

However, this was not attempted in view of the dubious implication of 

the results at this stage. The shape of the centre-line of the ring at 

t1  = 0.149 is shown in Fig. 6.6 

At t1  = iTA  (= 0.147), the separation of the two centre-line points 

on y = 0 is 0.05a. The overall length is greater by 2% over its initial 

value so that the core size is not significantly different from its 

initial value. Thus, within logarithmically small error, it appears 

that an elliptic vortex ring of axes ratio 0.2 and core radius cl  such 
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cl  > 0.025a would break up into two smaller rings before the apparent 

half-period stage is reached. 
aT 

The values of TN  - A 
 for the cases considered are shown in 

b 
Table 6.3. The reason for tabulating TN  instead of TA  is that TN  is 

independent of the impulse of the vortex ring. TN  is in good agreement 

with 

4 ab T(a2b, c0, 1) (6.4.8) 

where T is given by (6.2.3) and c0  is tabulated in Table 6.2. For 

comparison, the values of TL  are also shown in Table 6.3. 

It may be of interest to note that the velocity U of the centroid 

of the ring, defined by 

Ū = dz 
dt (6.4.9) 

where z is given by (6.4.7), oscillates in time about a mean value U 

with an apparent period approximately equal to liTA. A plot of U 

against time is shown in Fig. 6.1(c). U is in good agreement with the 

velocity of an equivalent circular vortex ring, 

VL  =  V(a  
(4na)

-1 	
Zb  , c 	1) 0,  (6.4.10) 

where V is given by (6.2.5). For comparison, the values of U and VL  

for the cases considered are shown in Table 6.3. 

b/a TN  = aTA Ū TL  VL  

0.8 1.213 1.212 3.935 3.925 

0.6 1.220 1.217 4.522 4.506 

0.4 1.290 1.244 5.564 5.425 

0.2 1.47 1.432 7.383 7.142 

Table 6.3 Apparent period of oscillation TN   and mean velocity Ū 
compared with TL  and VL respectively. 
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§5 Experimental measurements  

The elliptic vortex rings were produced by puffing air through 

sharp-edged elliptic orifices of the same eccentricities as those used 

in the numerical calculations. Each orifice, of semi-major axis a0, 

was cut in a thin plate of 14 cm diameter which was mounted on one end 

of a 70 cm long perspex tube of the same diameter. The other end of the 

tube was smoothly connected to a 8..3 cm diameter brass cylinder which 

contained the piston (Fig. 6.7). The piston was driven, through a gear 
a 

box, by a high torque stepping motor which was operated byjlogic 

control: 	circuit. 	With this arrangement it was possible to provide 

high initial and terminal accelerations with a uniform velocity over 

most of the piston stroke. The acceleration and deceleration times, 

the top piston speed and the length of the stroke could be easily 

adjusted. In order to provide draught-free conditions, the vortex rings 

were produced in a 40x40x70 cm perspex box. The arrangement made it 

possible to obtain reproducible vortex rings. 

The experiment consisted of hot-wire anemometer measurements to 

determine the circulation and core size and flow visualization studies 

to determine the mean translational velocity UE,  the equivalent ring 

radius R0  and the oscillatory features of the vortex rings. 

Glycerine smoke was used to provide flow visualization. The 

motion of the vortex rings was recorded on a 16 mm cind film at 32 f/s 

and 64 f/s. The film was analysed to determine the characteristics of 

the motion of the ring. Starting from the moment of generation, the 

maximum y-displacement (see Fig. 6.7), y
m 
 , of the vortex ring was 

recorded and Fourier-analysed. ym  for the cases 0.$ and 0.8 are shown 

in Fig. 6.8; the figure also shows the average values of ym  over five 

different runs. The ends of an oscillation cycle were defined to be 

the times when ym  was a minimum and the time interval between the ends 
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of an oscillation was defined as the oscillation time TE,  to be 

compared with the corresponding apparent period TA  of §4. 

A survey of the velocity field in a plane parallel to the plane 

of the orifice and at a fixed distance from it was made by recording 

hot-wire anemometer signals at various positions in the plane. At 

each position, several different recordings were made; for each recording, 

a vortex ring was produced, checking that the piston velocity had the 

same value each time. For a circular vortex ring, a few hot-wire traces 

are needed (Sallet and Widmayer (1974)) to obtain a qualitative descrip-

tion of the flow field. However, in the present case the vortex ring 

is deforming as it moves and traces at several positions are needed. 

The order of the difficulty of the analysis increases when more eccentric 

cases are considered. The measurements were repeated at a further 

distance from the orifice. 

From the available traces, the ones corresponding to the ax:Is of 

the ring and the centre of the core were identified. For the b/a = 0.8 

and b/a = 0.4 cases, these are shown in Fig. 6.9. The core-position 

trace was used to determine the core size of the ring. From the axis-

position trace, the velocity component u along the z-axis can be 

determined (by symmetry the other components are zero). This enables 

(see e.g. Didden 1977) the circulation r to be determined: within a 

closed curve C containing the vortex core, r is found by integrating the 

velocity along the z-axis and closing the curve C outside the z-axis 

at infinity where u and v (y-velocity component, say) are zero. Thus 

I' = 
	
(udz + vdy) = f u(z,y=0)dz = f uUE(t)dt 	(5.5.1) 

where the transformation dz = UEdt has been used. From the cine film, 

UE  is determined by analysing the end view of the evolution as the 

average of the z-velocity of the projection on the y-z plane of those 
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points on the vortex ring which lie in its planes (fixed) of symmetry. 

The velocity at each of these points on the vortex ring is obtained by 

noting its instantaneous z-displacement and numerically differentiating 

it with respect to time. The oscillatory behaviour of UE, anticipated 

by the numerical calculations, was noticeable only in the more eccentric 

cases and appeared in the form of fluctuations approximately about U 

(defined in §4). 

To obtain estimates of the vortex parameters, it is not satisfactory 

to model the flow by a uniform flow past an equivalent disk and use the 

method described in Appendix A; see e.g. Sallet (1975). Instead, the 

estimates are obtained using a model of the flow, given by Saffman (1978), 

in which it is assumed that when the flow is first set into motion, 

the vortex sheet at the orifice behaves locally like a two-dimensional 

vortex sheet formed at the edge of a semi-infinite plate. Then applying 

the similarity law for the roll up of the vortex sheet and using the 

estimates given by Pullin (1978) for the constants associated with the 

law, it is possible to obtain estimates of the circulation r, the length 

of the axes, and the core size of the ensuing elliptic vortex ring. 

The details are given in Appendix B and the estimates for the circulation 

r, the semi-major axis a, the equivalent radius R and the core size cE  

for the cases considered are given in Table 6.4. Here L and W refer to 

the displacement and velocity respectively of an equivalent slug of 

fluid in the perspex cylinder (see Fig. 6.7). The flux of fluid through 

a cross-section of the slug is equated to the flux through the orifice. 

The fluid velocity in the perspex cylinder was checked and found to be 

approximately uniform over the time of the stroke. For comparison, 

the corresponding measured values are given in Table 6.5 where 

Re(= r/v) is the vortex Reynolds number and V - 
4nUR 
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§6 Comparison of numerical and experimental results  

Plate 6.1 shows the contrast between a vortex ring produced from 

a circular orifice and that. produced from an elliptic orifice of axes 

ratio 0.4. 

For axes ratios b/a = 0.8, 0.6 and 0.4, the vortex ring was observed 

to oscillate in the manner anticipated by the numerical calculations. 

In fact, qualitative comparisons between some of the stills of the 

vortex ring from the cine film and the computed configurations in 

Figs 6.2-6.4 showed striking resemblance. Plate 6.2 shows the plan view 

of the evolution of the vortex ring for the case b/a = 0.4. As may be 

noticed from the plate, at the end of the first half cycle the vortex 

ring assumes the shape shown in Fig. 6.4 for time T7. This shape was 

observed at each subsequent end of cycle for three cycles indicating 

that this configuration may be a possible periodic solution of the vortex 

ring. The contortions seen in the photographs in the set of frames on 

the far right in Plate 6.2 are a defect of the photography and do not 

indicate a short-wave instability of the ring; the vortex ring has 

progressed beyond the depth of focus of the camera. However, a short-

wave instability of the type described by Widnall and Tsai (1977) for a 

circular vortex ring was eventually observed for the b/a = 0.4 case; 

Plate 6.3 shows eight waves growing on the elliptic vortex ring. The 

pictures were taken at approximately is after generation time. From 

Saffman's (1978) formula (2.18), with c = 0.62 and R = 2.95 (see Table 

6.5) and using his equation (3.6), the expected number of waves N on 

an equivalent circular vortex ring is N = 8 approximately. The 

agreement is remarkably good considering that the observed vortex ring 

is not circular. 

It was found that in each case considered, the oscillation time TE  

had a greater value for each subsequent cycle. This increase in TE  with 
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time is believed to be related to the accompanying increase in the 

equivalent radius of the ring observed at the end of each oscillation 

cycle. For the purpose of comparison with numerical computations 

aTE  

TE 	b 
(6.6.1) 

is defined. The values of 'kTE  for the first half cycle is compared 

with the corresponding numerical values of 
kTN in Fig. 6.10. It is found 

desirable to plot TE/TL(a2b, cE, 1) and TN/TL(a2b, c0, 1) instead of TE  

and TN  in view of the differences in core size between that used in 

the computations and the corresponding observed value. The results are 

in fair agreement in the cases b/a = 0.8 and 0.6. For the case b/a = 0.4, 

the value of TE/TL  is much greater than TN/TL. However, the error margin 

in the value of TE/TL  is large. This is due to the difficulty in 

ascertaining the value of r as a result of the high fluctuations in UE  

observed in this case. 

In the case b/a = 0.2, the vortex ring was observed to break up 

into two smaller rings as anticipated in §4, provided the Reynolds 

number of the flow was high enough (t/v > 1300 approximately). Plate 6.4 

shows the end view of the break-up process. The shape of the vortex 

ring prior to the break-up may be compared with the configuration shown 

in Fig. 6.5(c). After break-up, the two ensuing vortex rings are 

observed to oscillate and travel in directions inclined at equal angles 

to the z-axis; the size of the angles is such that the vortex rings 

move almost parallel to each other. At the Reynolds number of the 

experiment, the rings were not observed to rejoin. In Plate 6.5 individual 

photographs of the plan view of the vortex ring at different stages of 

the break-up process are shown. The time of the break-up of the vortex 

ring is shown in Fig. 6.10; the time of the break-up anticipated in 

§4 is also shown in the figure. 
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§7 Discussion 

By means of numerical calculations using the cut-off approximation, 

it has been shown that a flat elliptic vortex ring of axes ratio, 

0.8, 0.6 and 0.4, oscillates in time, the oscillations being periodic 

only in the first of these cases. At the end of a half oscillation 

cycle, the deviations of the shape of the vortex ring from an ellipse 

with the orientation of its axes reversed becomes more pronounced as 

more eccentric cases are considered. In the case of a ring of axes 

ratio 0.2, it is anticipated in §4 that the vortex ring would break up 

through the touching of the cores of distinct portions of the vortex 

ring. This suggests that there is a critical axes ratio, (b/a)cr, 

0.4 > (b/a)r > 0.2, above which an elliptic vortex ring oscillates 

and below which it breaks up. 

The results from experiments conducted at moderate Reynolds number 

(r/v ti 2000) are in fair agreement with the results of the numerical 

computations. The vortex ring oscillates in the cases of axes ratios 

0.8, 0.6 and 0.4 in a manner strikingly similar to that anticipated 

by the numerical calculations. In the case of the vortex ring of axes 

ratio 0.2, the vortex ring breaks up into two smaller rings; however, 

oP I~ 
the break up)occurs 	w 1rQh 	, ' the Reynolds number is high 

enough (r/v > 1300 approximately). 

The vortex trail of an aircraft breaks up into vortex rings as can 

be seen from the photograph (Fig. 1) in Crow's (1970) paper. The 

photograph shows that in the plane of maximum area (the horizontal plane) 

the vortex rings, when they form, have roughly elliptic shape . 

Using, as approximations, the data from Crow's paper (r = 268 m2/s, 

so that r/v = 1.8 x 107,:, core radius c0 = 2.7 m for a B-47 aircraft 

of span 35 m and moving at 220 m/s), and assuming that each ring when 

formed has an elliptic shape with axes" ratio 0.2, is flat and lies in a 
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horizontal plane, the results of §§4-6 suggest that each ring would 

break up into two smaller rings at 107 s after the initial ring 

formation; here the influence of other vortex rings in the trail is 

neglected. Since a vortex ring in an aircraft trail, when formed, is 

not flat and since the axes ratio appears from the photograph in Crows 

paper to be closer to 0.15 than 0.2 (also the size of the core is 

comparatively much smaller than that used in the calculations and 

observed in the experiments) it is expected that the actual break up 

of the vortex ring would occur at an earlier time. 

Not enough information is available in the photograph. However, 

on comparison with Fig.6.5,it appears that the break-up may occur 

30-40 s after the initial ring formation. 
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axes ratio semi-major L W a R=a+b/2 cE/a 
b0  /a0  = b/a axes of 

orifice 
a0  

cm 

cm cm/s cm cm cm /s 

0.8 3.1 0.7 11.7 3.38 2.95 0.33 390 

0.6 4 1.4 11.5 4.44 3.55 0.31 332 

0.4 4 1.2 9.1 4.61 3.22 0.32 370 

0.2 4 0.4 4 4.72 2.83 0.23 196 

• 

Table 6.4 Estimates of vortex parameters predicted by method given in  
Appendix B. 

b0/a0  = b/a a 
cm 

R-a+b  cE/a V 
cm/s 

2r 
cm Is 

Re = r/v 

cm 

0.8 3.17 2.85 0.31 ± 	.07 3.0 407 2714 

0.6 4.37 3.5 0.25 ± .05 2.8 437 2914 

0.4 4.28 2.95 0.29 ± 	.05 2.7 471 3140 

0.2 - - 0.26 ± 	.05 3.0 211 1473 

Table 6.5 Measured values of vortex parameters. 
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APPENDIX A: Initial core size used in the numerical calculations  

A process of generation of a vortex ring in a perfect fluid by an 

impulsive motion and subsequent annihilation of a flat elliptic disk 

is considered here (c.f. G.I. Taylor (1953)). 

Suppose in Cartesian coordinate system the edge of the disk is 

given by 

2 	2 x2 
+ 2 = 

c c d 
1 (c > d) 	 (A6.1) 

Then if the disk is moved impulsively from rest at speed U normal to 

its plane, the velocity potential at the disk is given by 

where 

2 	2 

+ E(e) (1 - 
x2 - 2)1/2 
c 	d 

(A6.2) 

2 2 	 rr/2 	 
e - (c 

2 
) and 	E(e) = f /1 - e2 sin20 d6 

c2 

are respectively the eccentricity of the ellipse and elliptic integral 

of the second kind. The kinetic energy of the flow is given by 

TD = -1 f f ~ 	 ds 
disk 

an 

(A6 .3) 

__ 2,rcd2U2 
3E e) 

and the impulse is given by 

dTD 

ID 	dU 

(A6.4) 

47rcd2U 
R77--  



126 

If now the disk is dissolved away, a finite vortex sheet is left 

behind, the vortex lines being ellipses ,of Ehc sāmē axes Tal„, os the 

disk. Writing x = cre cos 0, y = dre sin 9 (0 < re < 1.; -7r < 8 < 

the circulation in the portion ('gyp, .1 ) for any fixed 0 is, from (A6.2), 

2Ud 	2 % E e) (1 - re ) (A6.5) 

This configuration cannot persist because the self-induced velocity is 

infinite at re = 1. The vortex elements respond in such a way that 

the stronger vortex lines near re = 1 tend to roll up the weaker parts 

near re = 0 round them. Thus the vorticity tends to concentrate in an 

elliptic ring of major axis a and minor axis b, say, and of circulation 

r given by 

r 
2Ud 
E(e)  (A6.6) 

The impulse I and kinetic energy T of a vortex filament are given by 

Moore & Saffman (1972) to be 

I = 2 X A t ds 

r2 	i.X a 
T = 	{4~[ln 

cp 
- 2 + A + 	] - r(x A (V +V ).t)}ds 

	

0 	p Ds 	-E -I  

where p(s) is the radius of curvature at X, a point on the ring and VE+VI 

is approximately givetr by the right hand side_ of (5.3-.1)---11.-ss the velocity 

of a circular vortex ring of radius p and lying along the osculating circle 

as X. For an elliptic vortex ring, therefore, 	- 

.
R 	

rlrbk 	 (A6.7) 

2 
and T = TR = rra E(ln(

8(cb)1/2 
) 	1 + A)E(e) - (1 - ke2)R(e)] 	(A6.8) 

0 

where K(e) is the elliptic intergral of the first kind. 
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Following G.I. Taylor (1953), it may be assumed that 

TD = TR, 	I—D = Ist 

so that using (A6.6), we have 

ab = 4 cd 

and core radius c0 is 

2 
0 = 8(ab)~exp[- n - 1 + A - (1 - ke2) E(e) ] 2/6 

(A6.9) 

(A6.10) 

(A6 .11) 

Hence the cut-off length 

u(t) — c (L(t))-~ e-1—A 
0 L 0 

= 8(ab)'~(L(t))- exp[ - r2 - 3 - (1 - ' e2) K(e)] 	(A6.12) 7 	 2~ 2 	Eke) 

Thus with this process of generation the cut-off length does not depend 

on the choice of A. This implies that any information obtained from 

the governing equation (6.3.4) using the above cut-off length will be 

independent of the choice of swirl and axial velocities in the core. In 

particular the period T of small oscillations of a circular vortex ring 

of radius. R = 
a2
b is independent of A. 
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APPENDIX B: Estimate of vortex parameters using Saffman's (1978) method  

Estimates of the circulation r, the core radius cE  and the size 

of the elliptic vortex ring generated can be obtained in the manner 

suggested by Saffman (1978) for circular vortex rings. Here it is 

assumed that when the flow has just been set into motion, and the vortex 

sheet is of small extent and close to the edge, it behaves like a two-

dimensional vortex sheet formed at the edge of a semi-infinite flat 

plate lying along z = 0, n > 0 (see fig. 6.11). Initially the velocity 

potential is given by 

= - ark  cos 	x 	 (B6.1) 

where r = (n2+z2)k and a is determined by matching to the flow far from 

the edge. For flow through an elliptic orifice of semi-major axis a0  

and semi-minor axis b0  in an infinite plane, the normal velocity Vz  at the 

orifice is given by Lamb (1932, p.151). Near a point (x0,y0) on the 

edge of the ellipse, this is approximately 

VI Aini
-k  

(a02b0)(1 - e2  cos 60) 

where 4rA is the flux through the hole. By comparing this with 

ase 	
an estimate of a can be obtained. However, a varies along r ax x=n 

r=lnl 
the edge of the orifice which is undesirable. Thus an average value 

is taken, 

a = (B6.2) 
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Then for small times, the vortex sheet which appears at the edge 

depends on a and t only. Its centre (N1,Z1), circulation r(r1) about 

a small circle centred on the vertex of the spiral and total 

circulation r shed from the edge is given by 

N1  = c1(at)2/3, Z1  = c2(at)2/3, r(r1) = c3ar1k, 

r = ce 4/3t1/3 (B6.3) 

where cl, c2,  c3  and c4  are constants (estimates can be obtained from 

Pullin's (1978) calculations as c1  = 0.08, c2  = 0.34, c3  = 4.08, 

c4  = 2.40). 

If the piston stops moving at time t = W/L where W is the velocity 

of the piston and L is the displacement, the rolled up vortex sheet 

breaks away from the edge of the orifice. The semi-axes, a and b, 

core radius cE  and circulation r of the ensuing vortex ring are then 

given by 

2 
aL 2/3  	c4  aL 2/3 

a=a0 +cl(W) 	bl=b0 +cl(12E)2/3W  , cE = 2(W) 
c3  

r = c 4/3(L)1/3 
4a (B6.4) 

Since a/b # a0/b0, the vortex ring will have a different eccentricity 

from that of the orifice. However, for small values of L this change 
stapr%nej »n€ge VorL 

will be small. Also, the interaction of the ring with the ~ 4 would 

lead to a decrease in a and b below that given in (B6.4) (Sheffield 1977). 

Hence, for the range of eccentricities used here, this discrepancy is 

ignored and a and b are taken to be 

c1(a0+b
0)  aL 2/3 	c1(a0+b0)  aL 2/3 

a = a0(1 + 
2a b 	( W ) 	) 	b = b0(1 + 2a b 	

(w ) 	) 	(B6.5) 
0 	 0 

From (B6.1) the swirl velocity in the core is 'fr 'k. 
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CHAPTER 7: INTERACTION BETWEEN A VORTEX  
FILAMENT AND AN APPROACHING 
RIGID SPHERE  

§1 Introduction 

In consideration of vortex filaments in inviscid flow, it is often 

of interest to determine how these interact with each other or with 

surfaces present in the flow field. The trailing vortices of an aircraft 

and motion of two co-axial vortex rings are examples of interacting 

vortex filaments. The objective of this chapter is to determine the 

interaction between a vortex filament and a moving bluff body. 

The particular situation considered is that when a rigid sphere, 

which can be regarded as a typical bluff body, approaches an infinitely 

long straight vortex filament from infinity at a uniform speed. The 

evolution of the vortex in such a situation, from its straight 

configuration, is studied. The fluid is regarded as being inviscid 

and incompressible and of uniform density. 

The motion of the vortex is symmetrical about a plane which passes 

through the centre of the sphere and whose normal is parallel to the 

axis of the undisturbed straight vortex. Thus the situation is equivalent 

to the case of a vortex filament moving in a uniform stream over a rigid 

plane with a hemi-spherical hump in its path. 

The problem is treated in two stages. When the sphere is at a 

large distance away from the vortex, the interaction between the sphere 

and the vortex is weak so that the evolution can be determined from 

linear theory. Thus in §§2,3(b) the equation of motion of the filament 

(5.3.1) is linearized and solved to obtain the expression for the 

instantaneous shape of the vortex; the velocity contribution V
4 

 in (5.3.1) 

is obtained approximately using spherical harmonic analysis. 
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The shape of the vortex given by linear theory is evaluated at a 

time  is  when the sphere, approaching at a uniform speed U, is at a 

prescribed distance away from the position of the undisturbed vortex. 

This is used as the starting configuration of the vortex for the full 

non-linear marching problem (5.3.1) which is integrated numerically for 

subsequent times. In §4, the numerical procedure used in the calculation 

is described while in §5 the image system of a vortex element in a 

sphere, due to Lighthill (1956), is described and a full expression for 

VV is obtained for use in the numerical calculations. 

The vortex is chosen to have a uniform distribution in its core. 

In (5.3.1), Crow's (1970) method of cut-off is used for the linear 

analysis and that of Rosenhead (Moore (1972)) for the numerical 

calculations. 

The numerical results are presented in §6. The neglect of viscous 

diffusion and the wake of the sphere means that the results are of only 

approximate validity in real fluid flows. Indeed a qualitative 

experiment with a bath-tub vortex shows that although the vortex 

commences to move as anticipated in §6, when the sphere is close to the 

vortex, the wake appears to interact strongly with the vortex causing 

it to break up. 

In §3(a) the interaction between a point source and a vortex is 

discussed and for a hollow vortex the results are compared with those 

obtained from classical analysis and given in Appendix A; the case of 

an interaction between a source and a vortex in compressible flow was 

studied by Ffowcs Williams & O'Shea (1971). The two results are 

compared in Table 7.1 and provide a check on the cut-off theory in the 

case of infinitesimal disturbances to a vortex. 
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§2 Linearized equation of motion 

The equation of motion of a vortex filament, discussed in Chapter 5, 

is linearized in this section in order to consider the evolution of an 

infinitely long straight vortex filament when subjected to infinitesimal 

disturbances due to a non-uniform external velocity field. 

Let rectangular axes Oxyz be chosen so that in the undisturbed 

state, Oz lies along the axis of the vortex filament. If the vortex 

has strength r and if at time t its axis occupies the curve given 

parametrically by x(E,t), then its motion is governed by equation (5.3.1), 

ax. 	m ax 	(X( ,t) — X(E,t))dE 
at 

 

(E0' t) = r f 2 (E,t) A  	0 	3 + vv (E ,t) 
l x(E0,t) — x(E,t)) 

(7.2.1) 

where 4;1 0 is the contribution to the velocity at 
E0 
 from external 

sources which produce an irrotational velocity field. The notation g 

implies that a suitable cut-off is used to make the line integral finite 

at E = 0. For the linear analysis, the method of cut-off employed 

here is that due to Crow (1970) and described in Chapter 5, §2. This 

requires that a portion 
(E0

-c, 
 E0 + 

c) be removed from the range of 

integration, e being chosen so that 
Is(E0+c, 

 t) - s(E0-c,01 = 26c 

where s(,t) denotes distance along the filament, c is the core-radius 

ax 
and do  is a constant. Note that since . = t, a unit tangent vector 

to the vortex, it follows that 
8 
= 
	

I a 	
so that the cut-off length 

may be written 

E0+c ax 
26cc = f 

 l

a l 
dE  

Eo  c 
(7.2.2) 

From (5.2.3), the constant d o  is given by 

2 c 
log 26c  = k - 

42 
 l rv2dr 

r o 
(7.2.3) 
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where v is the swirl velocity in the core and there is no axial flow 

in the filament. For a uniform vortex v = rr/2wc2  so that 

log 2Sc  = 1/4 (7.2.4) 

and for a hollow vortex 

log 28c  = 1/2 (7.2.5) 

As explained in Chapter 5, the core cross-section is uniform 

along the filament, the core radius c being just that function of time 

only which conserves the volume of the filament. Thus c = c(t). 

However, as pointed out in Chapter 5, for infinitesimal disturbances 

to the vortex, the effect of the variation of c with time on the 

governing equation is of second order in the perturbation quantity 

and is neglected. Thus, for linear analysis, c = c0  where c0  is the 

initial value of the core radius. 

Equation (7.2.1) is to be linearized and solved subject to the 

initial condition applied at time t = to  

X(C,t0) = RCk -„ < < m (7.2.6) 

where it is the length scale of the particular problem considered. 

For an infinitesimal disturbance to the vortex, the parametric 

equation of the perturbed vortex is taken as 

X(c,t) = £(ck + ax'(c,t) + 0(a2)) 	 (7.2.7) 

where a  « 1. a  measures the amplitude of the response of the vortex. 

The external velocity field 111E  must also be expanded in terms of a. 

Thus 

VE(C,t) = aV'E(C,t) + O(a2) (7.2.8) 
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Substituting (7.2.7) and (7.2.8) into (7.2.1) and retaining terms 

to order a only gives 
ax' 

ax' 	r 	m x'(E0,t)-x'(E,t)-(F0 )a- (E,t) 	(E ,t) 
at (E0't) = 	2 k A f 

— 	— 	
3 	

dE + 
41a 	 I~0 - E) 

[S ] 
c 

(7.2.9) 

In view of (7.2.5) and the constancy of the core radius 

6cc0 = tea + 0(a)) 	 (7.2.10) 

To solve (7.2.9) for a given V'
' the Fourier transform of the 

equation with respect to E0 is taken. Thus, writing 

m 	ik 	m 	ikE 
x(k,t) = fm x'(EO,t)e 	°dE0, 	VE(k,t) = fm VV (CO,t)e 	OdC) 	(7.2.11) 

the transform equation, after a change in variable of the cut-off 

integral, becomes 

ikE
0 	

m x'(EO,t)-x'(E0+x,t) + xāx x'Q +x,t) 
at (k,t) - 	2 k A J e 	d 0 J 	 3 	 dX 

47rR 	
[
-co

] I X I 
c 

(k,t) 

where now the cut-off in the inner integral is implied at x = 0. Thus, 

since the range of this integral is now independent of E0, the order of 

the integration can simply be changed to give (suppressing the time 

dependence), 

ikE0 	m x'(c0)-x'(E0+x)+ a x'(sO) 
f e d 0 f 	

x 	
dX 

-co IXI3 

(l-eikx-ikxeikx) dX = k2x(k) 
x(k) f 	I I 3 

X 

[6c3 

f 
kdcc0 

1-cos x-x sin x
dx 

x3 

ax 	 a 

[dc l. 



ax 	kō c  

2t (k,t)  = - r  2 k2w(  _ 0)k 
A x(k,t) + 	(k,t) 

27rP 
(7.2.12) 

in view of (7.2.10). The integral on the right-hand side can be 

written in terms of cosine integral (C .01)) to give 
i 
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where 

w(n) = k[(cos n - 1)/n2  + sin n/n - ci(n)] 

In §3, (7.2.12) is used to consider the response of an infinitely 

long straight vortex to (a) a point j-  switched on at t = 0 at a 

distance f from the vortex and (b) a sphere approaching the vortex from 

infinity. 



rf 
a = QO (7.3.4) 
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§3 Vortex interaction: Linear theory 

(a) A point source in the external field. 

Suppose a point source of strength Q(t) is switched on at time t = 0 

at x
1 

= (-f,0,0) where f is its distance from the undisturbed position 

of the vortex. In the absence of the vortex the velocity potential of 

the flow at a field point x is given by 

h(x) = H(t)Q(t) x-xl (7 .3.1) 

so that the external irrotational velocity field E(x) is given by 

2E
=VSE. 

The length scale of the problem is f. Thus in (7.2.7) we choose 

2, = f (7.3.2) 

The contribution to velocity at X(E,t) due to the source is given by 

V
4 = U

E(IC(E,t)). Thus in view of (7.3.2), 

    x 
	

3( 	 -  i)(x( 	-i)) 
v( t) = H(t)Q(t)[ 

 
0-i 	

0 	
27 +

a( 	
r 
	) + 0(a )1  O 	

I 
.

l
3  k-i 

I 1

5

~- ~f E~l 	 ~1 

 

(7.3.3) 

2 
Thus if the response of the vortex is considered on a time scale 0(r) 

and Qo is a typical magnitude of Q(t), it follows from (7.2.8) and 

(7.2.9) that the appropriate choice of a is 

and this is required to be small in the linear analysis. Thus in view 

of (7.2.9) 
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V '(E ,t) - H(t)r3(t) 
	j 

0 	QOf 	
1E0h 
	il3 (7.3.5) 

Thus substituting this into (7.2.9) and writing x' = (x',y',z'), it 

follows from the initial condition x'(C,0) = 0 that 

z'(Eo,t) rE0  

QOf2(1+ 02)3/2 
 Ō Q(t)dt (7.3.6) 

(7.3.6) implies that the approximation obtained here will hold so long  
t 	 Q f2 

as f Q(t)dt  
0 

To determine x' and y' the Fourier transform of 	is is taken with 

respect to E0  and substituted into (7.2.12). Thus writing 

x(k,t) = x.i and y(k,t) = x.,j we have 

8t 
= 	r 2 k2w(kdc  c0if)y + 

2H(t)r0(t) 
 lkiKl(lkl) 

2wf 	 f Qo 	1  
(7.3.7) 

r k2w(kS c /f)x 8t 	2nf
2 	c 0 

Hence, 

co 

x'(E0,t) = 2r2  j S—(t-T) f kK1(k)cos[  r  2 k2w(kSc  c0/071 cos k dk dT irf O QO 	0 	 2Trf 

y'Q0,t) = - 2r
2  j —(t-T)  

f kK (k)sin[ r  k2w(kS c /f)T]cos k dk dT 
orf 0 QO 	0 	1 	2irf

2 	c 0  

(7.3.8) 

In Appendix A, for comparison, results corresponding to (7.3.8) 

are obtained using a classical method for the case of a hollow vortex. 

For a hollow vortex ōc  is given by (7.2.5) and in Table 7.1 

y'( ,t) as given by (7.3.8) for this case is compared with the corresponding 
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result ye(z,t) = af(z,t) (see A7.1), where z = f(g+az'(,t)), for a 

range of values of the parameter c0/f. For definiteness, Q(t) = Q0, 

E = 0 and t = 2Trf2/t are chosen; note that z'(0,t) = 0. There is a 

good agreement between the results for values of c
0 
 /f < 0.1. 

c0/f yi  yc  

Ye 

.001 2.3 x 10-7  

.01 3.5 x 10-5  

.1 9.8 x 10
-4 

 

.2 5.2 x 10-2  

.3 .22 

.5 .77 

Table 7.1  
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(b) An approaching sphere in the external field 

We now consider the response of the infinitely long straight vortex 

to an approaching rigid sphere which is brought at a uniform speed from 

infinity to the vortex. 

When the sphere is sufficiently far away from the vortex, the 

response is weak and can be approximately determined from the linearized 

equation (7.2.9) with the appropriate choice of VE'. The solution to 

the equation is obtained here and is used later to determine the 

approximate shape of the vortex at a time when the sphere is at a 

prescribed distance from the position of the undisturbed vortex. This 

shape is then used as the initial configuration of the vortex for the 

fully non-linear marching problem (7.2.1) and the subsequent evolution 

of the vortex is determined numerically. 

For convenience, the origin of time is chosen so that at t = 0 

the centre of the approaching sphere is at the position of the undisturbed 

vortex. Thus t = -m corresponds to the time when the sphere is at 

infinity and the vortex is straight. If the undisturbed position of the 

vortex is given by (7.2.6), where now 

2 = a 	 (7.3.9) 

and t0  = -co, and if the sphere has a uniform speed U, then at time t 

the centre of the sphere is at (see Fig. 7.1) 

where 

RO(t) = (-f, 0, 0) (7.3.10) 

f = -Ut, 	-co <t<m 

The external velocity field is due to the image vorticity in the 

sphere and due to the motion of the sphere. In the absence of the 

vortex, the velocity at a field point x can be described by the potential 
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E(E) = $I 
+ M (7.3.11) 

where 0I and 0M are respectively the contributions due to the image 

vorticity and the motion of the sphere. 

To evaluate ~I when the vortex is given by its perturbed position 

(7.2.7), we write 

0 	 OI(1 +
1I + 0(a2)) (7.3.12) 

where 
AOI is the velocity potential due to image of the undisturbed 

vortex in the sphere and the 0(a00I) terms allow for the perturbation 

from the straight vortex. 

OI can be determined by a spherical harmonic analysis as follows. 

In a coordinate frame Oxyz, fixed with respect to the centre of the sphere, 

the undisturbed position of the vortex is given by Y = Y where 

Y = X(E,-W) - X(t) = (f, 0, aO) 
	-~ < E < o 	(7.3.13) 

In the absence of the sphere, the velocity field at a field point 

Y = (x,y,z) is due to the straight vortex and the velocity potential 

is given by 

- r tan
-1 

an 1  y  
'0 	27r 

r tan-1 an 1 (r sin 0 sin 11, 	) 
2n 	r sin 0 cos ,- f (7.3.14) 

in terms of spherical polars (r,0,4,), r2 = x2+ y2+ z2. We seek the 

disturbance potential 
0OI 

when a rigid sphere is introduced. 
0OI 

is to 

satisfy the boundary condition 

x - f 

a 
ar (~ 
	) 0 + ~0I 

= 0 	 (7.3.15) 
r=a 
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For r/f < 1, 
00 

can be expanded in terms of spherical solid 

harmonics (Lamb, Ch. V, 1932) as 

r r sin A 1 	r2 sin 2~, 2 	r3 sin 30 3 
AO - 	f 	

P1 (cos 9) + 	2 	P2 (cos 0) + 	
45 	

P3 (cos9)+... 1 
6f 

(7.3.16) 

where P 
n
s(p) are the modified Legendre polynomials. Corresponding to 

each harmonic term on the right hand side of (7.3.16), there exists a 

complementary harmonic function obtained by dividing the term by 

r2n+1 
where n is the degree of the given harmonic. 

AOI 
is the appropriate 

linear combination of these complementary functions. Thus in view of 

(7.3.15), 

I' 	a3 	a5 	 a7 sin 30  __ 
UOI - 	2r2f situ, P1

1 
(cos8) + 9r

3f2 
sin 20 P2

2 
(cos6) + 60r

4f3 

x P33(cos A) + . } 

or in terms of  

Fa {Z 
2a2.... a7(3x242) 

UOI 
= 	

3 
{2 + 	-1 + 	2 4 	y   } 	(7.3.17) 

2nfr 	3fr2 
	r 

(Alternatively, from the sphere theorem (Weiss (1944)) 

2 

= rrfy f 	udu  
07 	27[a 0 (ux-r2f ' )2+y2u2 

cpm(Y) in (7.3.10) is given by 

U.Y 

M
(Y) = -1 a3 —3 

r 

Thus the external velocity field UE(Y) is given by 

UE(Y) = V($M_+ 001(1 + 0(a))). 

(7.3.18) 
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In view of (7.2.7), the parametric equation of the perturbed 

vortex in Oxyz frame is 

Y(,t) = Y + aax'(E,t) + 0(aa2) 	 (7.3.19) 

where Y is given by (7.3.13). Then VEQ,t) E E(Y(E,t)) is given by 

ra
3 	 2 4 

_ 3 {j 	' (1 +  
	2 .+ 3a 4 + ....) + 0(a))-  

4,rIYI f 	3IYI 	ZIYI 

a3 	3(U.Y)Y 
- 

21Z/13
{U 	

1:7_12+ 

0(a)) 	(7.3.20) 

Thus if the response of the vortex is considered on a time scale of 

0(2-) and U = 0(1.), then it follows from (7.2.8) and (7.2.9) that 
2 

3 
	a 

a = 0(1-3) (since IYI = 0(f)), and this is required to be small in the 
f 

linear analysis. Thus, since f = f(t), the linear analysis will be 

valid provided t < T < 0, where T is such that 

3 
a = a 3 « 1 

fT 

where fT = If(T)I. Thus 

(7.3.21) 

rf 3 	f-2 	f 
3 	

3(u.Y)Y 
vE'(EO,t) _ - 	T 

3 (1 
+

~ 2) j - 	T 3 Cu - 	_ 2 ) 	(7.3.22) 
47111Y1 	3171- 	2IYI 	I YI 

The contribution from the two terms in (7.3.22) is comparable if 

f = 0(r/U). 

Substituting (7.3.22) into (7.2.9) and writing x' = (x',y',z') 

and using x'(t,-o) = 0 gives 

az'(CO3t) = 
a3 fo 

-03 < t < T (7.3.23) 
2(U2t2 + a

2E02)3/2 
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To determine x'(g0,t) and y'(g0,t), the Fourier transform of 

V' is taken with respect to Eo  and substituted into (7.2.10). This gives 

āt = 
 rk  2 (k(5c  c0/a)y + A1(k,t) 

2Tra 

2 

at = 	
rk 

2 (k6c  c0/a)x + A2(k,t) 
27Ta 

where 

ai l  (k., t ) =2' { fa  K ( āf) -- k2K. ( )} 

t < T < 0 (7.3.24) 

k > 0 	(7.3.25) 

aA (k,t) = - r  {ka K (kf )  + 4t`a2k2 R (kf  )} 2 	2Traf f 1 a 	9  f2 	2 a 

Here Km(r1) is the mth  order Bessel's function of the second kind. 

To solve (7.3.24), the definition of A1(k,t) and A2(k,t) is 

arbitrarily extended to the range t > T and the Fourier-transform of 

(7.3.24) with respect to t is taken. Defining half-range Fourier-

transforms as 

        

        

        

        

T x+  

T 
y+ 

CO 

x 

y 
eist 

dt,  

T 
x_ 

T 
Y_ 

A
1- 

T A  
2- 

0 
=j 

x 

y 

Al  

A2  

eistdt 	(7.3.26)  T 
A1+ 

T 
A2+  

  

0 Al  

A2  

 

-o 

 

        

        

        

AND. 	 1111. 

Equations for (x+, y+) and (x_, y_), obtained on transforming (7.3.19) 

appropriately, are solved and inverted as 



os6 	 J sine'

sinĀ]_ 2t+tl)[cos6 

[ale(go,t)]  
 

ay'( 0,t) r 
__ 1

J J {aAl(k,t+ti) 

c 
CO c0 

0 0 
oskC dtldk t < T 
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1  m+ib 	x+ 
-ist 	

m—ic 	xT 	—ist = 
2n 	f 	e 	d + 	J 	e 	dS 	(7.3.27) 
-m+ib T 	+ -m-ic T 

Y+ 

 I_ y_ j  
where the paths of integration are closed in the appropriate half of 

the s-plane (b,c > 0) for inversion. Finally, x and p are inverted 

with respect to k to give 

(7.3.28) 

kō c 
where 6 = r  2 k2w ( 

c  °
)t1  and aAi and aA2  are given by (7.3.25). 

lira 
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§4. Approaching sphere in the proximity of the vortex 

In this section, a procedure is described for following the 

evolution of the vortex filament in the presence of the approaching 

sphere from its configuration at a time is (< T < 0), given by (7.2.7), 

(7.3.23) and (7.3.28), for times subsequent to ts. 

The evolution is followed by. a step-wise numerical integration of 

the integro-differential equation (7.2.1), the contribution  

due to the'evolving image system and due to the motion of the sphere 

being evaluated at each time step. The image system is discussed in §5 

where an expression for V
E is obtained. 

As explained in Chapter 5, the cut-off method employed in the linear 

analysis in §§2,3 is inconvenient to use for numerical work. Instead, 

(as in Chapter 6) following Moore (1972), Rosenhead's method of cut-off 

is used here; the method was described in the latter part of Chapter 5 §2. 

Thus in (7.2.1) the denominator of the integrand in the self-induced velo-

city line integral is replaced by {iX(CO3t) - X(E,t)I
2+u2}3/2

, where p is 

proportional to the core-radius c and the integration is carried out 

over the entire range of the integration. Thus p = 26Rc where SR is 

given by (5.2.5). For a uniform vortex with no axial flow, this gives 

log 26R = - 3/4 	 (7.4.1) 

The Lagrangian parameter E is chosen as in §3 so that in a fixed 

Cartesian coordinate system Oxyz the vortex filament in its undisturbed 

state is given by (7.2.6) as 

X(E,-m) = (0,0,aE) 

since t0 = -o and 2, = a. 

 - 

 

~ <E < (7.4.2) 
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At subsequent times g = constant always represents the same fluid 

particle. 

In view of (7.3.28), it is expected that the motion of the vortex 

filament will be symmetrical about z = 0 plane so that, writing 

X(E,t) = (x,y,z), 

x(-g,t) 	= 	x(g,t) 

y(-g,t) 

z(-g,t) 

= 	y(g,t) 

= -z(g,t) 

0 < E < (7.4.3) 

Hence it is only necessary to follow the portion 0 < E < = of the 

filament, say, and use (7.4.3) to determine the shape of the remaining 

portion of the filament. 

Thus, given an expression for Vc(E,t), the motion of the vortex can 

be determined by simply integrating (7.2.1) forward in time and 

calculating the length of the filament at each time step to obtain the 

value of p(t). However, a method for dealing with the infinite range 

of the integration must be described. 

It is expected that in the time of interest, the position of those 

portions of the vortex which are further than a distance of a few radii 

of the sphere away from z = 0 plane will not be significantly different 

from that given by (7.3.23) and (7.3.28). Thus, in view of the decay 

of x' with -} ±W,  the range of the numerical integration is truncated 

from (_=,=) to [-A,A] and the portions of the vortex corresponding to 

(-o,-A) and (A,=) are assumed to be straight and fixed in their 

undisturbed position. The contribution from these straight portions to 

the velocity at the points on the portion corresponding to [-A,Aj is 

evaluated analytically. 

This method of dividing up the range of integration means that 

small kinks will develop at E _ ±A and these will affect the velocity at 
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points near = ±A. Thus A must be chosen so that these points are well 

outside the range of interest. However, the disturbance due to the 

kinks will propagate down the length of the vortex and the calculations 

must be stopped once this starts affecting the velocity at points in the 

range of interest. In the calculations described below, when the 

calculations were stopped, the disturbance due to the kinks had progressed 

only a short distance down the vortex and the difficulty did not arise. 

Thus the self-induced velocity integral in (7.2.1) is written as 

ax(E,t) 	(x(c ,t)-x( ,t))dE 
I 	 A 	  
-co a 	{IX(E0,t)-X(E,t)I2+u2}3/2 

A ax 	(X(E0,t)—x(E,t))dK 
_ -

Ā aE (,t) A 	2 2 3/2 + —s 	(7.4.4) 
(Ix(~0,t)—x(E,t) 1+11) 

where 

-A 	k A(X(E ,t)-a0k) 
Is(&,t) _ ( I 

	0 	
2 2 3/2 d -co A 	{ Ix( 0,t)-agkl +u } 

k A X(C ,t) 	aA - z( ,t) 
0 	(2 - 	0  

IX( O,t)I 2
+u2 	

(IX( 0,t)-aAkr2+u2)1/2 

aA + z(;),t) 

(IX(E0,t)+aAk I 2+u2)1/2 
(7.4.5) 

Although the integrand in the cut-off integral is finite everywhere, 

it is large in the neighbourhood of = E0 and this would cause loss of 

accuracy in evaluating the integral. Thus, as in Chapter 6, it is 

necessary to subtract off a suitable function from the integrand and 

write the equation of motion (7.2.1) as 
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ax 	r A ax 	(21( 0 ,t)—x(,t)) 
āt 

 
;2t) =.ān f Z

A 	
2 2 3/2 -A 	(Ix(E0,t)-x(,t)I +u ) 

ax 	a2x 
- (ā=)0 A ( 2)0 P(E,t)}dg a 

ax 	a2x A 
+49E0 A (aE2

)0 jA P( ,t)d + Īs(E0,t ) + -E( o,t) (7.4.6) 

where 

P(C,t) 
k(E-E0)2 

(7.4.7) 

 

ax 
((E-E0)2(a )02 + u2)3/2 

and I5(E,t) is given by (7.4.5). The integrand in the first integral 

in (7.4.6) is 0(1) everywhere while the second integral is elementary. 

For the full non-linear problem, the variations in core size 

cannot be ignored so that in view of the uniformity of the vortex 

cross-section and conservation of volume, 

A  
u(t) = 26Rc0 {2~ j

A 19X

al 
d}-1/2 

(7.4.8) 

where c0 is the uniform radius of the vortex filament in the undisturbed 

state and where the volume of the portion of the vortex corresponding to 

[-A,A] is required to remain constant. 

Since the displacement of the vortex from its undisturbed state 

decreases away from z = 0 plane (cf. (7.3.23)), the distribution of the 

Lagrangian points on the vortex can be chosen in such a way that the 

size of the spatial grid increases away froth g = 0 point. The choice 

made here is 

g = sgn(V)V2 < (7.4.9) 



149 

However, any suitable choice of function can be used. The range 

[-WE, /El of V was divided into three parts, [4E, -A1], [-A1,A1] 

and [A13 /1 . The range [-A1,A1] was divided into 2N1 portions by 2N1+1 

equally spaced grid points. In the outer ranges, [-la, -A1] and 

[A10/7], the grid spacing was chosen to be twice that in [-AI,A1], 

A being chosen so that there are 2N2 portions of equal length in each 

of the outer ranges; hence a total of 2(NI+N2) + 1 points per half range 

[0,V] was used. The spatial derivatives were calculated using four-

point differences at all points; the particular choice of grid spacing 

allowed the use of the centred formulae at points near V = ±A1. 

Simpson's rule was used to evaluate the integrals. The integration 

forward in time was effected by the fourth-order Runge-gutta formula, 

used because of its stability. 

In §5 an expression for V~ is obtained and the results of the 

calculations are described in §6. 
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§5 External velocity field 

The image system of a vortex element in a sphere has been given 

by Lighthill (1956). This is briefly described here and an expression 

for the velocity field due to the image system of an infinitely long 

vortex is obtained. 

Suppose that, with the centre of a sphere of radius a at the 

origin, a vortex element of length ds and circulation r is situated at Y1  

(see fig. 7.1). The strength of the element J is defined as 

8Y 
J = r 

8s 	
ds (7.5.1) 

Then, writing IYII = rl, the image system of the vortex element is 

given by 

2a  (11.11)..Y.1 
 

(i) a vortex element of strength= ( 	2 	liJ) at the inverse 
1 	rl  

2 
point Y = .(--a  )Yl and 

1 
(ii) a line vortex of circulation -(J.Y1)/arl  stretching from the 

inverse point to the centre of the sphere. 

The image system satisfies the boundary condition at the surface 

of the sphere and the requirement that the vorticity field inside the 

sphere be solenoidal. The latter condition is necessary if the corres-

ponding Biot-Savart velocity field is to be irrotational. 

For an infinitely long straight vortex filament, (i) and (ii) imply 

that the image system consists of a vortex ring given by 
2. IYII2 

IY — Y1/2I = 4 	
and a vortex sheet extending over the interior of 

that circle (cf. Weiss (1944)). 

In view of (i) and (ii) the velocity at a field point Y due to the 

image system of a vortex element at Yl  is given by 
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a a 	
(2(J.Y1)Yl-J)A(Y 	rl1) 	 (J.Y1) 

a
2/rl YlA (Y-Xi1) 
1 Slc = 4wrl 	

ly - a2/
rl 

Y
1I3 	

4Tra 	
0 	1Y-xj11 3 
	  dA 

(7.5.2) 

where 	= Yl/rl. Thus in view of (7.5.1), 

(7.5.3) Su = W ds 

where 

8Y 	ay 	a-Y 
(2( as 1.Y1)Y1 - as l) A (Y - rll) 

W = 
ra [{  

2 4~rrl 
ly - (r ) Y/ 3 

1 
l 

 

DY 
f-1 Y ) 	a2/r1 as 2 1  Y1 A Y 	r 	dl 3l 

a 	0 	I Y-4-1 I 

} 

(7.5.4) 

Note that the integral in the expression is elementary. 

Equation (7.5.3) is used here to obtain an expression for the 

instantaneous velocity due to the image system of the evolving 

infinitely long vortex filament of §4 so that Yl is given parametrically by 

- < E < 

Y1 = x(E,t) - xa( t) 
—a* < t < ao 

(7.5.5) 

where X (t') is given by (7.3.9). The vortex is regarded as being closed 

by a semi-circle of infinite radius (this is consistent with the 

spherical harmonic analysis of §3 since in obtaining the velocity 

potential cp0 (7.3.9) of an infinitely long straight vortex, the same 

assumption is made). The velocity field is then given by Pds where 

the integral is taken round the closed loop. However, if W is expanded 

in powers of a/r1 (a/r1 < 1) as 
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aY  2 aY 
	(X.1^(1)   8'11 	BY 

= 4
ffr

3 {Y A 
as + r  2 (asl 

A Y1  + 	
r2 (

2(ag.Yl)(Y1A Y) - 3(asl  A Y))l 

1 

4 
+ 0(2-71-.)} 

rl  
(7.5.6) 

and integrated term by term, the first term integrates to zero so that 

ai 
W ds = 	(W 	ra3  Y A 

as 
) ds 

4, r 
(7.5.7) 

The integrand in the integral on the right hand side is of O(1/R2) on 

the semi-circular path of integration, where R is the radius of the 

semi-circle, so that in the limit R 	integration along this path 

gives null contribution. Thus 

W ds = 	f 	(W 	a3  Y A 8s Y1)ds 
-o<E<W 	471r 

(7.5.8) 

if the vortex is given by the parametric equation (7.5.5). 

The instantaneous position of any point on the portion of the 

vortex filament corresponding to -A < E < A is governed by the evolution 

equation (7.4.6). The portions corresponding to -00  < E < -A and A < E < 

are straight (see §4) and for points on these portions Y1  is given by 

E e ( 	-A), (A,-) 
Y1(C,t) = (-Ut, 0, aC) 

t e  
(7.5.9) 

so that ds = (0, 0, a)ds. 

An expression for the velocity due to the straight portions can 

be obtained from (7.5.3). After an integration by parts of the integral 
2 

with respect to A and a change of variable A = = al, the order of the 
1 

integration can be changed and the integration with respect to E 
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performed. Thus (7.5.7) becomes 

W ds = 	I (W 	
ra3 

Y A ā— )ds 	+ Ms(Y_) 
-A<F<A 	47rr 

(7.5.10) 

where 

Ms(Y) = 4r3{Y A[(f2A10(1) + 2 - (f2+ A2)
)k-fAll(1)i] + a2fA10(1)1 

2 	1 
+ 3a YA f [(Y.k)(A (X)fi + A (A)k) + (Y.P(A))(A (A)f +A (A)k)]dA} 

	

r2 — 
0 	

21 	
i 22 — 

P(n) = fi - 

 

(7.5.11) 

Here 

an Y 
r - 

and A
nm(n) 

are given in Appendix B. 

Putting A = 0 in (7.5.11), we obtain the velocity due to the image 

sytem of an infinitely long straight vortex. The result is in agreement 

with that given by Weiss (1944) for this case; Weiss obtained the result 

using his sphere theorem. Note that the sphere theorem is inconvenient 

to use in the present non-linear problem since it requires evaluating 

the velocity potential of the evolving vortex at each time step. 

As a further check, putting A = 0 in (7.5.11) and expanding Ms in 

powers of a2/r2 gives a result in agreement with the spherical harmonic 

analysis of O. 

Finally, in view of the motion of the sphere, the external velocity 

UE (Y) at a field point Y in the absence of the vortex filament is given by 

UU (Y) = ~ W ds + 
V4N 

2 

(7.5.12) 

where 0 is given by (7.3.17). 
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Hence, with Y1 given by (7.5.5) and writing 

< t < m 	 (7.5.13) 

and using (7.5.10), (7.5.4) and ds = adE, we have VE(E0,t) (= UE(10)) 

is given by 

BY, 	BY 
A ((2 —.Y )Y 	1) A R 	Y 	F Fa I 	a —1 —1 aE 	—0 	—0 	a 

4;
—A 	IY111R13 

!E 0 t) = 
IY

I2 A 
DE 

11 -~-1 dE 

—O 	~ i ~ 

Ua3 	3a3(U.Y
0

)YY 

+ Ms(Y0) 	~1Y 13 	
1-01 5 

(7.5.14) 

where 
2Y a 1 

—0 	WI  

F = 
BY —/ 	— 	da Y ( 	)Y 	I Bs 	

1 1 A Y 0 I Y_ aa1 Y 13 
r1 —1 

and Ms is given by (7.5.11). 
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§6 Numerical results  

To present the results, a, the radius of the sphere, is chosen 

as the unit of length and a non-dimensional time defined by 

tl  = 	r  2 (t — ts ) 
4na 

(7.6.1) 

is used. Here the time origin is shifted to is  (<T < 0), the "switch-

over" time when the shape of the vortex is evaluated from the linear 

analysis of §3 and the evolution of the vortex from this configuration 

followed numerically for subsequent times. In view of the considerations 

of §3, the relative importance of the various terms in VE  as given by 

(7.5.14) depends on a parameter B which is defined as 

B 
r 

4iraU (7.6.2) 

The initial core radius was chosen as 

c
0 
 /a = 0.125 	 (7.6.3) 

This allowed the evolution of the vortex to be followed using a 

reasonable number of grid points. The core size is not small as required 

by the cut-off theory since it is expected that when the sphere is close 

to the vortex, the portion of the vortex which is of interest will have 

a radius of curvature p of 0(a). However, as explained in Chapter 6, 

in view of the agreement between Saffman's (1970) formula for the velocity 

of a circular vortex ring and the corresponding numerical results of 

Fraenkel (1970) and Norbury (1973) for values of c0/p which are not 

small compared to unity, and because the error in the cut-off approximation 

to this velocity is of the same order as in Saffman's formula, it is 

reasonable to expect, although no rigorous proof is available, that the 

cut-off approximation will hold equally good for such values of c0/p. 
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In any case the results are not very sensitive to the value of c0/p; 

this is because the velocity obtained by the cut-off approximation 

depends only logarithmically on the cut-off length and hence on the 

core size. 

The vorticity distribution in the vortex was taken to be uniform 

so that 6R  is given by (7.4.1). 

It is clear from the results (7.3.28) of the linear analysis that 

at any given time the = 0 point will be most displaced from its 

undisturbed position. The y-displacement of the E = 0 point was 

calculated from (7.3.28) for various values of the ratio a/f where f 

is as in (7.3.9). The double integral in (7.3.28) was evaluated by 

splitting the infinite range of the integral into various parts depending 

on the frequency of oscillation of the integrand. Over the parts where 

the integrand was highly oscillatory, one of the integrals was 

approximated using standard methods. Simpson's rule was used to evaluate 

the integrals. The results for three values of B, namely B = 10, 5 

and 2.5, are shown in Fig. 7.2 where ly/f1 is plotted against a/f. 

It was decided to follow the evolution of the vortex, subsequent 

to time ts, numerically for the cases B = 10 and B = 5. The choice of 

is  is made in the following way. For the two cases considered, the 

times is  whenjy/flis 2k%, 5% etc. is determined from Fig. 7.2. At each 

time, the shape of the vortex is evaluated from (7.2.7), (7.3.23) and 

(7.3.28). Using this as starting configuration of the vortex, equation 

(7.4.6) is integrated numerically over a trial period and the values of 

y/f obtained from the calculations are compared with the results of 

linear analysis. is  is then chosen to be the maximum value of is  for 

which there is reasonable agreement between the two results over the 

trial period. 
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For both B = 10 and B = 5 cases, it was found possible to choose 

is  so that y/f was 9% at ts. However, for convenience, is  was chosen 

so that for both cases a/f = 0.5. This implies 

t =_2a 
s 	U 

(7.6.4) 

From Fig. 7.2,1y/f+is 9% at this time for B = 10 case and 7% for B = 5. 

Thus linear theory is adequate until the sphere is fairly close to the 

vortex. 

Table 7.2 shows-the values of N1, N2, A, Al  and time step At 

used in the calculations. Trial and error showed that these gave 

adequate accuracy. 

B N1  N2 A Al  At1  

5 10 11 16.384 .6325 .008 

10 10 11 16.384 .6325 .016 

Table 7.2 

At time t1  = t1 , shown in Table 7.3, the centre of the core at 

E = 0 point was a distance d*  (see Table 7.3) away from the centre of 

the sphere. This implies that the core of the vortex is touching the 

sphere. The situation is similar to that of two vortex filaments with 

their cores touching. The results at this stage may be viewed with 

scepticism since the calculations are based on the assumption that the 

separation between the vortex and its image is large. However, by 

means of a numerical calculation with vortices in two-dimensions, in 

which the core was allowed for, Moore (1972) was able to show that the 

Biot-Savart formula gives roughly the correct velocity even when the 
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cores are touching. In the present case, the vortex at = 0 may be 

regarded as being in contact with a tangent plane and the local situation 

represented two-dimensionally! Moore's study then suggests that 

although the cores will be distorted so that the cut-off length will 

change, the approximations on which the present calculations are based 

will be reasonably adequate even when the vortex core is close to the 

sphere. 

In order to determine the maximum negative y-displacement, yM, it 

was decided to continue with the numerical integration up to the time 

ti  = tM  when this was achieved. 	IyMI was maximum when the x-coordinate 

of = 0 point coincided with the x-coordinate of the centre of the 

sphere. The values of 9M  and tM  are shown in Table 7.3. 

B tl  d* 
tM yM t1 

5 2.568 1.119 2.672 -1.057 2.608 

10 3.600 1.123 3.710 -1.057 3.696 

Table 7.3  

The position of the portion of the vortex near z = 0 plane, due to 

its proximity to the sphere, changes rapidly while points on the vortex 

a distance further than a from the z = 0 plane are displaced by a small 

amount. At t1  = t1  (see Table 7.3) numerical instability set in in the 

neighbourhood of z = 0 plane, presumably because of the rapid changes 

there and because the distance between the grid points is not small 

* 
An improvement on this would be to consider numerically the motion of 
a two-dimensional vortex of finite core round a cylinder. However, 
this -has not been attempted. 
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compared with the separation between the vortex centre and the image. 

To cure this, the calculations were stopped at t1  = tl  - 2At1  and 

restarted with more points so that the grid spacing was reduced by 

half and the time step was taken to be kAt1. This removed the instability. 

In Fig. 7.2 various values of ly/fl for times subsequent to is  are 

shown for the two cases considered and compared with the corresponding 

results of linear analysis. The results from the numerical calculations 

are shown up to the time when ly/fl achieves a maximum value. For 

subsequent times the value of Iy/fI drops. The reason is apparent from 

Fig. 7.3 which shows the track of E = 0 point in the x-y plane for the 

case B = 10. As the vortex 'clears' the sphere at time t1  = tM  the 

vortex appears to follow a roughly circular path round the sphere so 

that the magnitude of the y-displacement falls. To follow the motion of 

the vortex for subsequent times, more grid points and smaller time steps 

are necessary. However, in view of the dubious significance of the 

results at this stage, this was not done. 

In Fig. 7.4 three views of the side elevations at different stages 

of the evolution are shown for the B = 10 case while Fig. 7.5 shows the 

corresponding end elevations. The figures clearly show the rapid change 

in shape of the vortex near z = 0 plane subsequent to time t1  = tl*. 

The plan view is shown in Fig. 7.6. 

In both B = 5 and B = 10 cases, the overall increase in length of 

the portion of the vortex considered increased by less than 1.5%. The 

vortex stretched most in the neighbourhood of = 0 point where, in the 

B = 10 case, the distance between two points, initially a distance dz 

apart, increased to 1.36z at t1  = ti and to 56z at t1  = tM. The 

corresponding values in B = 5 case were similar. Away from E = 0 

points, certain portions of the vortex underwent contraction. 
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At t1  = tM  the kinks at = ±A due to the truncation of the vortex 

had progressed by a distance less than a down the length of the vortex 

and did not affect the velocity at points on the vortex a distance less 

than 5a from z = 0 plane. 

A qualitative experiment was conducted in a cylindrical tank of 

water in which a 'bathtub vortex' was set up at the centre. From the 

edge of the tank, a sphere was moved towards the vortex at a speed 

corresponding to B = 10. Dye was used for flow visualization. 

The vorticity distribution in the bathtub vortex is not uniform. 

However, it is expected that this will make only a quantitative 

difference to the motion of the vortex. 

As anticipated here the vortex does not move appreciably until the 

sphere is quite close to the vortex when it commences to move in the 

sense indicated in Fig. 7.5. However, the cross stream induced by the 

vortex over the sphere produces a side wake in the region into which 

the vortex is starting to move. The wake appears to interact strongly 

with the vortex filament which soon breaks up. 

Thus the present calculations are of approximate validity in real 

fluids since viscous diffusion and the wake of the sphere have been 

excluded in the calculations. 
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APPENDIX A: Source-vortex interaction using classical methods  

The interaction between a hollow vortex and a point source in 

compressible fluid has been studied by Ffowcs Williams & O'Shea (1970).,: 

By taking the appropriate limit, the corresponding results for 

incompressible flow can be obtained from their results. However, the 

boundary condition used by them at the vortex surface (the material 

derivative of the pressure is required to vanish) does not facilitate 

the determination of the position of the vortex surface. The incom-

pressible flow problem is therefore stated here and the solution is 

written down. 

The velocity potential due to the undisturbed vortex is 

0 = Ke 	(r > c0  > 0) in plane polar coordinates. The flow supports a 

cavity in r < c0  where the pressure p = 0. At t = 0, a point source is 

switched on at X= (f,Tr,O) and the velocity potential (7.3.1) is 

imposed on the mean flow. It is required that the pressure be 

continuous across the disturbed surface, 

r = c = c0  + c'(z,9,t) (A1.1) 

and that the normal velocity of the disturbed surface be equal to the 

normal fluid,velocity at the surface. A solution is sought where the 

perturbation potential vanishes at infinity. 

Thus for r > c the perturbation velocity potential 0  satisfies 

+ 1 	 ee. + e  
rr r r 	2 	zz 

r 
= 0 	(Al.1) 

and the linearized boundary conditions which are applied at r = c0  are 

given by 



x(z,t) 2Tr 
f cde 
0 

2Tr 
f c cos e.cd6 
0 

y(z,t) 

2Tr 
f c sin 0.cd0 
0 

(A1.5) 

t~ cde 
0 
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K ā~ 	_ K2 t 
(at)r=c0 + a 2 ( 	c 	= 0 

a6)r=c0 a 3  
0 	0 

Dc' 	K- ac' 
	(it) 

at 	
a 

2 ae = (arr=c0 
0 

(A1.3) 

Then, in terms of the natural functions of the vortex, c' is given by 

(-1)meimeK1 '(kf) 
c'(r,6,z,t) = - 

Tr 	
f Q(t-T ) f cos kz E 	K 	(kc ) m 	

X 

Iml 	o 

imK- 
T 

x e a0 	cost r 2 S ine] dk dT. 
2Trc0 

(A1.4) 

where 
2 	kcOK lm

l (
kc0 ) 

sl ml 	Kim' (kc0) 
> 0. 

Similarly, $ can be written down. 

For a fixed value of z, in the coordinate frame of §3, the vortex 

surface is given by the curve x = c cos 6, y = c sin 0 so that the 

centre of the curve is at 

0 0 	0 	m=-m 

With c2 = c02 + 2c0c', substitution for c' gives 

	

2 t 	
cc K1(kf) 	

r 	r 

	

x = Tr f Q(t—T) f 	c K kc 
[cos( 	2(1 81)T) + cos( 	2(1+51)T)]cos kz dkdT 

	

0 	0 0 1 	0 	2Trc0 	2Trc0 

	

2 
t 	K1(kf) 	r 	r 

	

= Tr f Q(t—T) f c K (kc 
)[sin( 	2(1-51)T) + sin( 	2(1+S1)T)]cos kz dkdT 

	

0 	0 0 1 0 	27c0 	27rc0 

(A1.6) 



For kc 0 « 1, expanding 01 in kc0 gives 
0 

by Kelvin (1880). 

( 	2)(1-51). 
27rc 

This is a feature of the hollow vortex and was noted 

2~rc2 

{2 + 3k2c
0(log kc

~ + .1159) + 0(k4c Ō )} 

0  

2)(1 + 1) 
21rc 0 
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From 

of §3 (cf. 

integrand 

frequency 

the integrand in A(1.6) it appears that, unlike the results 

7.3.7), for each wavenumber k, the contribution to the 

is from two modes of vibration: a co-rotational mode of 

( 
r 
2)(1 + a1) and a contra-rotational mode of frequency 

2Trc 0 

( r 2)(1 - al) = r 2 { A2c02(lo
g k 

27rc0 	21rc0 

and 

+ .1159) + 0(k4c
o
4 )} 

(A1.7) 

Thus the co-rotational mode is much faster than the contra-rotational 

mode so that if the initial normal velocity of the displaced vortex is 

small, the amplitude of the co-rotational mode will be very small 

compared with that of contra-rotational mode. For kc0" « 1, the 

contra-rotational mode frequency can be identified with the frequency 

of vibration given by the cut-off method. The error is 0(k4cp ). 
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APPENDIX B: The coefficients A
n,m 

in §5 

In the expression for the velocity contribution Ms(YY in equation 

(7.5.11), An m(n) are given by 

A (n) = E 
m:(2n-k-1): [ 	(aA)

m-k 	
(-aA)~k 	l n=1,2,... 

n'm 	
k=0 2n:(m7k). 	

(aA±IP(n)I)
2n-k 	

(_aA+IP(n)I)
2n-k 	

m=0,1,2,... 

if k.P(n) = ±IPI where P(n) is as in (7.5.11). If Ik.P(n)I # IPI, 

i.e. Ik A PI ¢ 0, 

2 2 	2 2 
A (n) = 	-{[ 	ā A 	a A  
2,m (4-m) IaAk+P(n)I 3 I-aAk+P(n) 

+ (m-1)111 2 
A2,(m-2)} 

] + (2m-5)k.P(n)A 
2,m-1 

m = 1,2,3 

aA + k.P 	aA - k.P 
A2,0(n) = 	1 	

2[ 	
3 + 	3 + 2A1,0 ] 

3IkAP(n)I 	IaAk+P(n)I 	I-aAk+P(n)I 

IP(n)I 2+aAk.P(n) 	IPI 2 - aAk.P 
1 	 

A11 (n) _ IkAP(n)I2 [ TaAk + P(n)I 	I-aAk+P(n)I 	] 

A1,0(n) _ 
1 	aA+k.P(n) 	aA-k.P(n) 

IkAP(n)I2 [l aAk+P(n)l + -aAk+P(n)1 



FIGURES AND PLATES  

165 



• Q(s,t) 

Fig. 3.1 An element of a vortex layer with centroid 
P(s) and radius of curvature p(s). 
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Figure 6.2. Evolution of the elliptic vortex ring of axes ratio 0.8. 
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Figure 6.3. Evolution of the elliptic vortex ring of axes ratio 0.6. 



Y 	TnT. T 
T3 

5111 	 (II 	I 

-0.5 0 0 	0.5 0 1.0 
. 	i 

0.5 -0.5 

T1 
	----To 

X 	1 	 
1.0 	-1.0 

Plan view  

a 

Side view 	 End view  

Figure 6.4. Evolution of the elliptic vortex ring of axes ratio 0.4. 



1.0 Y 

Plan view 

2.0 Z 

1.5 

2.0jZ 

I .5 ~ 

. T1 

t r, 
ri~'~'-r'~'~I-r'~~r'~I~'~~~~~~~O~~~X ~~-r~~~~-r~~~~~~~~~Y -1 .0 -0.5 0 IJ ' I ' , , , I i ' 'I ' I I I . 0.5 1.0 -1.0 -0.5 O.~ O.S 1.0 

Side view End view 

Figure 6.5. Evolution of the elliptic vortex ring of axes ratio 0.2. 



0 0 -1.0 -0.5 0.5 0.5 	1.0 1.0 	-1.0 	-0.5 	0.0 

End view  Side view 

2.0—Z 

1.5— 

1.0— 

Y 

T5 

Plan view  

Figure 6.6. Shape of the vortex ring of case b/a = 0.2 at tl  = 0.149 
(> zTA). 



/
Perspex box 

Figure 6.7. Experimental set-up. 

Stepping motor 
Velocity transducer 

Gear box Piston 

Light 
Orifice plate 

Hot wire 



[cm] 

0 

10 

0 

	.74 	
%

j 0 

jA • 6,0 • 
O '° 00 

20 	 • 30 	 40 	 50 

o q,-iis 	 o o a 

de. 0 
e.Y..a' 

$ [cm] 

Figure 6.8. Plot of y vs. distance from the orifice. In the upper half positive y is plotted for b/a = 0.6 
case and in the lower half negative yM  is plotted for b/a = 0.8 case. The unshaded symbols 0 and o 
refer to values obtained from a single run while the corresponding shaded symbols refer to averaged 
values. 
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Figure 6.9. Non-dimensional voltage output from the hot-wire anemometer, placed 10 cm from the orifice, plotted 
against time. The 	 refers to b/a = 0.8 and 	refers to b/a = 0.4 case. 
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Figure 6.10. Plot of T/ TL  against axes ratio b/a, The symbol 0 refers to TE/TL(a2b, CE, 1); the standard 
errors a+or these experimental values are also shown, The • refers to TN/TL(-T, C0,1). For b/a = 0.2, the corresponding times of the break-up of the ring are 
shown by a and g respectively. 
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Plate 6.1. Comparison between an evolving vortex ring and a 
non-evolving vortex ring. 



Plate 6.2. The plan view of the evolution of an elliptic vortex 
ring of axes ratio 0.4. The order of the sequence is from top to 
bottom and left to right. The top left-hand frame shows the vortex 
ring just forming. The major axis of the orifice is in the horizontal 
direction. The film sequence was taken at 32 frames/sec. 



Plate 6.3. Vortex ring in the case b/a = 0.4 at the end of third 
oscillation showing short-wave instability. The sequence was 
taken at 32 frames/so 
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Plate 6.4. Side-view of the break-up process of the vortex ring 
in the case b/a = 0.2. The order of the sequence is as in Plate 6.2. 
The film sequence was taken at 32 frames/sec. 
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Plate 6.5. Detailed plan view of the break-up of the vortex ring 
in the case b/a = 0.2. 
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Figure 7.1 Coordinate system used in §§3,5. 



Figure 7.2 A plot of lyI/f vs. a/f. 
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Figure 7.3 Track of E = 0 point of the vortex in the x-y plane for B = 10. 
C1  and CM  are the positions of the centre of the sphere corresponding 
to the positions P1  and PM  of the vortex. The sphere has been drawn 
in these two cases while for intermediate times only the centre of the 
sphere is shown. PM is the position of the vortex at t1 = tN. The 
circulation of the vortex is in anti-clockwise sense. 
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Figure 7.4 Side view of the evolution of the vortex at times t = 2.56 (S1), 
ti  =  t1  (S2) and t1  = tM  (S3) for B = 10. o marks the position 
o the centre of the sphere at these times. 



  

 

r,  • 

	

Figure 7.5 End view of the evolution of the vortex at times t
1 

	2.56 (S
1
) 

ti  = 4(s2) and t1.= tM  (S3) for B = 10. 	1 	1  
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Figure 7.6 Plan view of the evolution of the vortex at times t = 2.56 (S1), 
ti  = ti  (S2) and t1 = tM  (S3) for B = 10. o marks the position 
of the centre of the sphere at these times. 
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