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ABSTRACT

The work in this thesis is devoted to the study of the motion of
vortex layers and vortex filaments in fluids which are regarded as
either inviscid or as having a small viscosity.

The first part of the thesis is concerned with the motion and
stability of vortex layers in two dimensions. The growth of waves on
a vortex sheet may be suppressed if the sheet is being stretched. The
influence on this result of regarding the vortex sheet as having a
finite thickness is examined. Also in Part I, the generalisation of
Birkhoff's equation of motion of a vortex sheet to a thin layer of
arbitrary vorticity distribution is considered. Hence an equation of
motion of an instantaneously created vortex sheet undergoing viscous
diffusion is obtained and is.used to study growth of long waves on a
Rayleigh layer. Higher order approximations to the equation of motion
of a layer of uniform vorticity in an inviscid fluid are obtained.

The second part of the thesis deals with the motion of vortex
filaments in three-dimensional flow. Two problems are considered.
Firstly, the evolution of a vortex ring of elliptic configuration
is determined numerically and the results are compared with those of
quantitative experiments performed with smoke rings. The calculations
 suggest a break up of vortex rings of large imitial eccentricities and
this.is verified by the experiments. Secondly, the interaction between
an infinitely long straight vortex filament and an approaching rigid
sphere is considered. The evolution of the vortex when the sphere is
sufficiently far away from it is determined from linear theory and is

followed up numerically for subsequent times.
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CHAPTER I: GENERAL INTRODUCTION

In receﬁt_years a considerable interest has been shown in the
motion and behaviour of vortices. The interest has in part been
motivated by the concern over the persistence of trailing vortices
behind large aircraft which constitute a hazard to other aircraft.

Thus an understanding of the formation and properties of the trailing
vortex system behind an aircraft is needed and has led to several
studies of vortex formation and vortex interactions. A recent survey
of such studies has been given by Saffman & Baker (1979).

Many unsteady fluid flows of interest, of the kind mentioned above,
are characterized by low viscosity and the presence of distinct regions
of high vorticity imbedded in an otherwise irrotational flow. Jets,
wakes, free-shear layers and vortex rings are a few more examples of
such flows. The usual source of vorticity in flows of this type is
through viscous interaction with a solid boundary and subsequent
ejection from the boundary in the form of a shear-layer or vortex
sheet. Generally, this sheet may break up through Kelvin-Helmholtz
instability or evolve in unsteady manner and roll up into a vortex
filament. In any case, the vorticity away from the boundary is confined
to narrow regions in the form of vortex layers or vortex filaments.

It is customary in such flows to neglect viscosity and replace
the vortex layer or filament by a vortex sheet or line vortex respectively
and calculate the induced flow kinematically using the Biot-Savart
law. However, before this can be done, the position and shape of the
layer or filament has to be determined.

The present study is concerned with the motion of vortex layers
and vortex filaments. Throughout, the fluid is regarded as homogeneous
and incompressible. It is also regarded as either inviscid or as

having a small viscosity. .



The work presented here is divided into two parts. Chapters 2-4
deal with the motion and stability of vortex layers while in
Chapters 5-7, the motion of vortex filaments is considered.

The theme of the work on vortex layers in Part I has been to
examine the effect on the motion and stability of a vortex sheet if it
is regarded as having a finite thickness, in flow situations where the
corresponding results for a sheet of zero thickness are known. A survey
of calculations of the motion of a vortex sheet of zero thickness has
been given by Fink & Soh (1974).

In Chapter 2, the effect of finite thickness on the stability of
a stretching vortex sheet is examined by considering a simple flow
model.

In Chapter 3, the generalisation of the equation of motion of a
vortex sheet, as given by Birkhoff (1962), to a thin layer of arbitrary
vorticity distribution is considered (in the case of a layer of uniform
vorticity this has been achieved by Moore (1978)). Hence an equation
of motion, valid for small times, of an instantaneously created vortex
sheet undergoing viscous diffusion is obtained and used to study growth
" of long waves on a Rayleigh layer.

Higher order approximations to the equation of motion of a thin
layer are obtained in Chapter 4 in the case of a uniforq vorticity
distribution in the layer. Hence an improvement to Moore's equation
is obtained.

The motion of vortex filaments in Part II is studied using the
'cut-off' approximation of Crow (1970) for the velocity at a vortex.
This has been successfully used before by, among others, Moore (1972)
and Leonard (1974) and has been rigorously justified by Moore &

Saffman (1972). The equation of motion of the filament based on this

approximation is discussed in Chapter 5.



The equation is used in Chapter 6 to numerically follow the
evolution of an elliptic vortex ring. Calculations are presented for
various eccentricities of the initial ellipse. The results are
compared with those from quantitative experiments in which the vortex
rings were produced by puffing air through elliptical orifices.

In Chapter 7, the evolution of an infinitely long straight vortex
filament in the presence of an approaching rigid sphere is considered.
The shape of the vortex filament when the sphere is sufficiently far
away from the vortex is determined approximately using linear theory.
The subsequent evolution of the vortex from this shape is followed
numerically. The interaction between a point source and a vortex is

also discussed using the linearized form of the equation given in

Chapter 5.



_PART I:

MOTION OF VORTEX LAYERS IN

TWO-D IMENSIONS

10



11

CHAPTER 2: THE STABILITY OF AN EXPANDING CIRCULAR VORTEX
LAYER

§1 Introduction

It is well known that a plane uniform vortex sheet of constant
strength in an inviscid fluid is unstable; the strength of the vortex
shegt is the discontinuity of tangential velocity across the sheet.
Small disturbances on the vortex sheet grow exponentially with time,
the ones with the shortest wavelength growing the fastest.

This violent instability can be significantly suppressed in real
fluids by two possible mechanisms. One is viscous diffusion which
tends to thicken the vortex sheet. The effect of finite thickness on
the stability of a vortex sheet was examined by Lord Rayleigh (1896)
who considered the growth of infinitesimal perturbations on a straight
layer of uniform vorticity w in an inviscid fluid. He showed that

disturbances of wavenumber k grow like exp(gt) where

o> = 2’; (exp(-2kb) - (1-kb)?) (2.1.1)
Here b is the thickness of the layer. The right hand side of (2.1.1)
is negative if kb > (kb)c = 1.28. Thus short waves of wavelength

A= %} such that A < kc = 4.85b are not amplified. For A > A, waves
grow exponentially.

In unsteady flows such as a rolling up vortex sheet created at
sharp leading and trailing edges of lifting surfaces, the vortex sheet
may undergo stretching. Stretching implies that the strength of a
vortex sheet decreases with time; if the sheet is thought of as a

rectilinear distribution of discrete vortices of constant strength, so

that the strength of the sheet is proportional to their number density,
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then stretching implies separation of these vortices. Stretching

of the vortex sheet has been shown by Moore & Griffith-Jones (1974)

to have a stabilising effect on the vortex sheet. They examined the
stability of a uniform circular vortex sheet, which is undergoing
stretching, to small disturbances in the plane of flow. The sheet is
congidered to be stable if all disturbances which are bounded initially
remain bounded for all time. It is shown that the sheet remains stable
provided the stretching rate is faster than (time)_%. The results are
consistent with Saffman's (1974) heuristic treatment of the effect of
stretching on the stability of a vortex sheet. Later, Moore (1976)
examined the stability to two-dimensional disturbances of an arbitrary
vortex sheet and considered the effect of non-uniformity of the vortex
sheet.

Zakharov (1977), unaware of the work of Moore and Griffith-Jones,
re-examined the stability of a uniform circular vortex sheet which is
undergoing stretching, for a particular stretching rate. He found
that a point vortex introduced at the centre of the expanding vortex
sheet has a stabilising influence on the vortex sheet.

Moore & Griffith-Jones, in their investigation, showed that even
though the vortex sheet was stable for sufficiently fast stretching
rate, the amplitude of short-wave disturbances was greatly amplified.
However, it is possible that in a real fluid,viscosity, by thickening
the vortex sheet, damps out these short waves.

The object of this chapter is to examine the effect of finite
thickness on the stability of a stretching vortex sheet in an inviscid
fluid. This is achieved by studying the flow model of Moore & Griffith-
Jones with the vortex sheet replaced by a uniform vortex layer. Thus
a uniform circular cylindrical layer of constant vorticity is considered.

The layer undergoes a radial expansion which is driven by a concentric
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line source. Since the total amount of vorticity in the layer is
constant, the cross—sectional area of ecylindrical vortex layer must
remain constant so that the thickness of the layer decreases with
increase in radius.

The surfaces of the vortex layer are perturbed by small disturbances
which do not vary in a direction parallel to the vortex lines so that
the vortex lines are not distorted.

In §2, the equations governing the disturbances are obtained. It
has not been possible to obtain exact solutions of these equations and
in §3 a short-wave approximation is developed in the case when the
thickness of the layer is comparable with thevwavelength of the
disturbances.

‘It is interesting to note certain observations made by Crow &
Barker (1977) in an experiment to generate a vortex pair. For each
vortex, they observed amplified disturbances on the rolling-up vortex
sheet; the disturbances originate at the sharp edge where the sheet is
created and grow on the outer portions of the vortex spiral. It was
found that the wavelength of the disturbance was 2.66 where
§ = 4(vt)%. If the vortex sheet at the sharp edgé was thickened, the
appearance of the instability was delayed and the wavelength of the
disturbance was 4.76. That this effect may be partly due to the
stretching which the vortex sheet undergoes is revealed by a certain

feature of the results obtained in 53 and is discussed there.
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§2 Basic flow and stability analysis

Plane polar coordinates (r,8) with r = O at the centre of the
expanding layer and 6 pointing in a fixed direction are chosen. At
time t, let R(t), R+(t) denote the inner and outer radii of the layer,
respectively. If ﬁ} and"ﬁe are the radial and azimuthal velocity
components, the equations to be satisfied by the unperturbed flow at

time t are

w R(t) <r <R (t)
19 , - +
T or ( 6) = (2.2.1)
o} otherwise
and 2 (5) = o r#0
3r T :

where w is the constant vorticity in the layer, so that if T is the

total circulation

I' = 7wA (2.2.2)

where A = Rf(t) - Rz(t). Thus the area wA of the layer is conserved.
The expansion of the layer can be considered to be due to a line source

of variable strength at the origin.

The unperturbed velocity field is then given by

- _ Rk _ M
r r r

0 r < R(t) (2.2.3)
- \
ug = r(r2-r%)/2mar R(t) < r < R (t)

F/one r >R, (t)

where a dot denotes differentiation with respect to time. There is, of

course, no discontinuity in velocity at the two surfaces of the layer.
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The disturbed shapes of inner and outer surfaces of the vortex
layer are taken to be of the form which preserves the area of the

vortex layer, viz.,

= R(e,t) = R()(1 + e(t)el®®)

L}
1

(2.2.4)

R,(0,0) = R (£)(1 + u(e)e®®)

La]
1]}

respectively. Here, ¢ and u are complex functions with |eg|,|u| << 1

and s is a positive integer whose values distinguish between the different

modes; a general disturbance can be represented by a sum of these modes.
As the vorticity is uniform in the layer, the vorticity at any

point within the layer remains unchanged and the perturbation velocity

field is irrotational within the layer, the disturbance merely shifting

" the vortex lines in the layer. Hence the perturbation velocity field

is irrotational everywhere and can be expressed by a velocity potential

of the form

a (e)e56 o0 | es
; = az(t)r-se1se + a3(t)rse189 R<r < i+ (2.2.5)
aa(t)rse189 r <R

where a; (i = 1,4) are complex functions of time. This choice of the
potential ensures that the perturbation velocity field is regular
everywhere.

The total velocity at a field point is then §'+ V$ where

V= -sa-r- i + %-a—ae- é and u may be the analytic continuation of the basic

flow from its original circular domains (as defined in (2.2.3)) into the
wavy domains of the perturbed flow (as defined in (2.2.5)). The analytic
continuation may be Taylor series expansions of the basic flow about

points on the boundaries of the original domains.
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The disturbed flow must satisfy the exact boundary conditions
2= (r - R(OA + e()e™®®) = o (2.2.6)

and
u (E(ur, ue)) continuous (2.2.7)

at the disturbed inmer surface, with two similar conditions at the
disturbed outer surface. The second condition ensures that the
disturbances do not cause either a vortex sheet or a source distribution
to appear at the surface, as these would violate the vorticity or the
continuity equations. It ensuYes that the pressure is continuous across
the surface, as can be seen by examining the unsteady Bernoulli equation.

Neglecting terms of order higher than 0(|e|) in (2.2.6) gives

u. = R+ (eR + Re + isEB(R)E)e]l'se (2.2.8)
But
_ du_(R) ~
u_ = u (R) + (r-R) ——— + ..... 8¢ + ...,
T b o ar 3ar _
=R
and u_(R) =R
r

so that substituting into (2.2.8) and linearizing the equation gives

~ .. du_(R) .
%2 = (Re + Re + isu,(R)e - R ———— e)else (2.2.9)
T| =R 8 or

Now, to 0(e), in view of (2.2.8), u_ is continuous across the
disturbed surface so that the boundary condition (2.2.7) implies the

continuity of

ou_.(R) . ~
- 5 iso 1 3¢
ug = ug(R) + R —— ee™" + o 5
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But since
w r = R+0
1 9 -
;g(me)—
0} r = R-0
and Eé is continuous across r = K, we have
1,2 _ % (R - 0)} = -Rewel®
R{ 56 (R + 0) Y (R - 0)} Rewe (2.2.10)
and from (2.2.9)
35 . . _ BG}(R)
— + = -4 -—
== (R £ 0) (Re + Re + isuy(R)€ - R—3— ¢) (2.2.11)

A similar analysis at the disturbed
further equations, corresponding to (2.2.

Then substituting for ¢ from (2.2.5) and

outer surface gives three
10)-(2.2.11), in ¢ and .

eliminating a; (i = 1,4) gives

c e iw R ys
€+ € 2(R-'.)u-o
(2.2.12)
p- e ils,y 1w Ry |
2 2 2 'R
21rR+ +

Equations (2.2.12) reduce to known results in three cases,

(i) putting R, = a, a constant and R = 0 in the second of these
equations gives the equation for a two-dimensional disturbance of

a circular cylindrical vortex (Lamb, 1932, p.231).

(ii) by eliminating u, say, from (2.2.12) and transforming the resulting

equation by the substitution

de!
2(en)

1sT

4

t
/ (2.2.13)

0 R,

e(t)

n(t) exp(- )
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gives
2sRy - > 2 S, . iwv’R
H - i{v n + n[jr((l—vs) - (1-2v) ') + R s(s=2)] = 0 (2.2.14)
where v = ';iji
2R
+

By taking the limit R + R_ in (2.2.14), the equation governing
perturbations on a uniform expanding vortex sheet, as given by Moore

& Griffith-Jones is recovered.

(iii) If R = 0, then (2.2.14) reduces to the equation governing
small perturbations on a non-stretching uniform circular vortex
layer and is in agreement with the result obtained for this case

by Zakharov (1977).

From (2.2.12),it can be shown that

* igl F dat'
vy = #n exp(- - / 5 ) (2.2.15)
o R, (t")

where the asterisk denotes complex conjugate. Thus, in view of (2.2.4),

the disturbed surfaces are given by

t
R(1 + |n|explis(e- I f _ar ia(t)])

2]
L}

4o 2
0 R, (t") )
(2.2.16)F
t :
r o= R(L% [n|explis(e - = [ —§5—) - ia(e)])
™o R, “(t")

Thus, since 6 =0 at the inner surface and 8 = I‘/21rR+2 at the outer

surface, it follows that the disturbances on the two surfaces travel

in opposite direction with equal phase speed.

THere eia(t) = n/|n]




19

It may be noted from (2.2.14) that when s = 2, so that the
surfaces of the vortex layer are distorted into ellipses of small
eccentricity, a motion in which this shape rotates with angular
velocity F/4ﬂR+2 is possible. A similar result was obtained by Moore &
Griffith-Jones for the expanding vortex sheet. The result is analogous
to Kirchoff's well-known solution for a rotating elliptical vortex core.

It has not been possible to find an analytic solution of (2.2.14)
for s # 2, even in the case where the radius is a function of time of

the form considered by Moore & Griffith-Jones, viz.,
R(t) = Ry(L + at)” (2.2.17)

where RO(>O) is the initial radius and a and n are arbitrary constants
assumed positive for an expanding radius which does not become zero
for £ > 0.

However, in the case of short waves of wavelength comparable to
the thickness of the layer, it is possible to obtain an approximate
solution to (2.2.14) for a general R(t) using the WKB method. This is

developed in §3.
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§3 Short waves of wavelength comparable to initial layer thickness

For a layer of thickness b(t) = R, (t) - R(t) small compared with
Rl(t) = ¥(R_ + R ), it is proposed to solve (2.2.14) approximately in
the case when the wavelength of the disturbance ZwRI(t)[s is of the
same order as b(t). To be specific let

s = ms;
(2.3.1)

b(t) = bl(t)/m

where m is a large parameter and 1ﬁ[h1 is of the same order as s,

so that
b, (t)
_ sb(e) _ f171 -
Then, in (2.2.14)
R.,b
v e ———— = L a-Loaton
(R1 + b/2) 1 1 1
and
. mé 2
(1-2v)% = (1-269 1 o 728 4 B4 o(——))
mB1 msl 2 2
m"sy

so that (2.2.14) is approximately given by

2R18 2 2
i - R, " + nim°s; "8y + 0(m. ;)] = 0© .(2.3.3)
where
2
_ r a2 -28
% = —5 3 ((1-8) e M) (2.3.4)

167 R1 B



21

An approximate solution to (2.3.4) for large m is then given
by the WKB method as
t t

n v =S exp( is [ o (en)aet) + —Drexp(-is f o %(t)ar") (2.3.5)

00 o ¢0 0

where s = ms, is now written. The expression @O is analogous to the
dispersion relation (2.1.1) governing the growth of waves on a straight
uniform non-stretching vortex layer; indeed if R = 0, (2.1.1) is
recovered in the above approximation.

The approximate solution (2.3.5) is valid only if
8° >> ¢ — b % (2.3.6)
dt< 70 )

(0lver (1961)). Thus, in general (2.3.5) is true for a restricted
range of values of t. In particular, it is not valid at such times

as when @O vanishes.

As remarked in §1, ¢0 vanishes when 8 = Bczz 1.28, i.e. when the

wavelength of the disturbance is 4.85 times the thickness of the layer.
For an expanding vortex layer, B(t) is a monotonically decreasing

o will vanish at a finite time t = t.s
such that B(tc) =8, and (2.3.5) will not be valid near t = t . Also

function so that if 8(0) > Bos @

since ¢0 is positive for t < t, and negative for t > t.> the essential
character of the solution (2.3.5) for t << t and t > t_, when it is
valid, will differ. The connection formulae relating the solution in
these two ranges of time can be obtained and the transition solution near
t=t, determined by standard methods.

Thus for 8(0) > Bc
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t
c
—S+ cos(s | (o,(e')*

dt' + % - a) t << tc
(@0) t

' s1 1/6 § .
n o c(g—zz—y) {éos(a}Bi(z) + 31n(a)Ai(z)} t vt
0" "¢

c T 5 : t X
cos(a)exp(s [ (-¢ (t'))2dt') + sin(e)exp(-s [ (-3 _(t')) dt')}
( )%{ t 0 e 0

0 c c

t >> t (2.3.7)
Cc

where ¢ and @ are arbitrary constants, -1 < a <'m, Ai and Bi are the

Airy functions and

z = (séo)zls(t'- t.) (2.3.8)

The approximate solution (2.3.7) holds provided (2.3.6) is satisfied.

For B(0) < B.s the approximate solution for n is given by

n(t) ——2——5 cosh(} s(-@o(t'))%dt' + al) (2.3.9)7
(-2,) 0 :

which holds provided (2.3.6) is satisfied.

In the power law case (2.2.17), the right hand side of (2.3.6) is
uniformly bounded for t>t_  only if n < %. Accordingly, (2.3.7) for
t >> t. and (2.3.9) will hold for a restricted range of values of t if
n > %. However, for large t the thickness of the vortex layer is very
small and the motion may be modelled by replacing the vortex layer by
a vortex sheet and Moore & Griffith-Jones have shown that in this case
for n > % the perturbations on the sheet grow algebraically.

In view of (2.3.7) and (2.3.9), the final amplitude of the
disturbance as t -+ @ is greater than the amplitude at t = T, where

T=0if g(0) < B, and T = t_ if B(0) > B.» by a factor of order

+Here D and @, are arbitrary constants.
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exv[—zr / ———12 % - (1-p)D%ae 1 . (2.3.10)
m
T R,'8

This is an extension to tﬁe corresponding result obtained by Moore &
Griffith-Jones and allows for the thickness of the vortex layer.

The solutions (2.3.7) for t >> t, and (2.3.9) can be expressed
as in Moore & Griffith-Jones in a way which enables it to be applied
more generally. If U(t) is the jump in tangential velocity across the
layer of uniform vorticity w at time t, and there are p/2m complete
waves on a length of the vortex containing unit circulation, then to

leading order the amplitude of the disturbance is proportional to
w o -pu%(t") /o v?e') 2.k
exp[5 | (e - (1 - B =% ] (2.3.11)
T

where T is as in (2.3.10). This result is valid only for waves on a
circular uniform vortex layer of non-constant strength when the wave-
length of the waves is comparable to U/w. However, it is possible that
the result is true for any uniform vortex layer. When the vortex layer
is not uniform (2.3.11) will require modification in view of the results
obtained by Moore (1976) for waves on a non-uniform vortex sheet.
In pargicular the vorticity w would need to be determined at each instant
of time.

It is interesting to note that 2 in (2.3.7, 9) is a maximum at t = £
when 8 = Bm = 0.634. Since the area of the vortex layer remains constant,
bCt) = b R_ /R

oo 1

that B(t) = sboRo/Rlz(t). Thus at B = B , the wavelength of the

disturbance A = 2mR,(t )/s is
m 1 ™m

(t), where bo and R, are initial values of b and Ry, 80

A = 9L b
m BmR (t 5 0
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If the initial thickness was fbo, where £ > 1, then

2mR_£
A= —m(ey b
m g R, (t 0]
ml m
so that the ratio Am/b0 is greater in this case. Also, the value of
t in this case will be greater. If we assume that, in experiments,
the waves on a stretching vortex layer are first observed when they
have a wavelength Am, then these results would partly explain the
observations of Crow & Barker (1977) described in §1, although the

vorticity distribution in the layer is not uniform in the experiments

nor is the flow laminar when the vortex layer is thickened.
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CHAPTER 3: EQUATION OF MOTION OF A THIN
VORTEX LAYER

§1 Introduction

Many incompressible fluid flows at high Reynolds number are
characterized by thin vortex layers, surrounded by irrotatiomal flow.
It is usual in such flows to neglect'viscosity and replace the vortex
layer by a vortex sheet. If the instantaneous position of the vortex
sheet can be determined, then the flow can be calculated using the
Biot-Savart line integral.

A convenient formulation of the motion of a vortex sheet in an
inviscid fluid in two-dimension has been given by Birkhoff (1962).
If T denotes the net vorticity between one end of the sheet and a
point,with complex coordinate z,on the sheet, then the equation of motion,

can be written in parametric form as z = z(T',t) where =z satisfies

r

2z * _ i ¢ dr'
s (T.t) = -2 g SO S D (3.1.1)

where f denotes Cauchy principal value integral and Pe is the total
circulation in the sheet. Equation (3.1.1) reduces the problem of
calculating the position of the vortex sheet to a marching problem in
time and would therefore seem suitable for numerical treatment. However,
invariably chaotic behaviour results and the solutions are sensitive to
time step and discretization procedures used. It is possible that this
behaviour is a manifestation of the Helmholtz instability of the vortex
sheet discussed in Chapter 2.

Recently Moore (1978) (henceforth referred to as (M)) has

generalised the Birkhoff equation to a thin vortex layer of uniform

vorticity in the hope (unrealized) that this may overcome the difficulty.
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In this chapter the case when the vorticity is non-uniform is
considered. The vorticity is required to decay exponentially away
from the centroid line C (defined in 82) of the distribution. The
free vortex layer is regarded as a double-sided boundary layer on an
evolving space curve C whose equation of motion is sought.

The method of solution is as in (M). Thus an 'outer' problem
based on flow at a large distance from C due to a vortex sheet at C
is posed. The solution to this is matched to an 'inner' solution for
the flow in the vicinity of C. An expansion in terms of the small ratio(¢)
of a typical vortex layer thickness to a typical radius of curvature
of C is developed.

In 82 the intrinsic coordinate system used is described and the
equations of motion established. 1In §3, assuming that the vorticity
distribution w is instantaneously known, an inner approximation to
the flow field is obtained in terms of w.

In evaluating the outer flow only the mean properties of the vortex
layer, such as the curvature of C and the circulation density of the
equivalent vortex sheet are required and the actual details of the
vorticity distribution do not matter. Hence the outer solution is
identical to that found in (M) and the results are summarised in §&.

In §5, the outer solution is matched to the inner solution to
obtain an equation of motion of C in terms of the unknown vorticity
distribution w.

The determination of w is discussed in §6. It is found that for
the leading order correction to Birkhoff equation (3.1.1), the equation
for w reduces to the boundary layer equation and does not Jggd to any
further simplification. Thus, in general, the determination of w
remains an unsolved problem. In 87, the equations obtained in §85,6
are used to study growth of long waves on an initially straight vortex

layer of arbitrary vorticity distribution in an inviscid fluid; the
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results are in agreement with Drazin & Howard (1962) and provide a
useful check for the equations.

In 58, a solution for w, valid for small times, is found for the
case of an instantaneously created arbitrary vortex sheet undergoing
viséous diffusion. Hence an equation of motion for such a sheet is
obtained. The equation is used to study long waves on a Rayleigh
layer.

Wherever possible, the notation used in (M) is retained.

The equation of motion of the vortex layer in terms of the unknown
vorticity distribution w is given by (3.5.19). The equation retains
the simplicity of the vortex sheet model, while incorporating finite
thickness effects approximately. In §9, a simple interpretation of
the equation in terms of forces acting on an element of the vortex
layer is given (the .w reader may wish to consider this interpretation
first).

A modification to Kirchoff's invariant for a vortex sheet is

obtained in Appendix C; it allows for viscous dissipation.
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§2 Preliminaries

In this section the equations of motion for the flow in the
immediate vicinity of the vortex layer are established. The intrimsic
coordinate system to be used here was introduced in (M) and is briefly
described below.

Let s be the arc—distance measured along a plane curve C; C will
be identified with the centroid line of the vorticity distribution.
Let P be a point close enough to C for there to be a unique normal
from P to C. Let the normal meet C at 0. Then, in a frame 63?, fixed

relative to flow at infinity, the position of P at time t is given by
r(P) = R(s,t) + qﬁ(s,t) (3.2.1)

where R(s,t) refers to the point O, n is the distance OP and n(s,t)
is the unit normallat 0; ﬁﬂs,t) points to the left as C is traversed
in the increasing s direction (n is positive in the positive fi(s,t)
direction).

Differentiation of (3.2.1) and use of Serret-Fremet formulae for

plane curves leads to
dr = 5(1-ds + fdn (3.2.2)

where p(s,t) is the radius of curvature of C at O and

O (3.2.3)
9s

|w>

é(s,t) is the unit tangent at 0. Hence the coordinate system is

orthogonal with line elements hlds and h2dn where

(3.2.4)
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If u(P) is the fluid velocity in OXY frame at P at time t, then

define relative velocity (u,v) in (s,n) system by

_ ):3 en '
u(P) = sEtRap tus+n (3.2.5)
and since
8n .
I (s,t) = -Q(s,t)s , (3.2.6)

where Q(s,t) is the angular velocity of the frame (égé),at a point with

fixed s, (3.2.5) can be written

- N - ~ R -
u(P) = (s.3p-fm+us+(@.zp+v)n (3.2.7)

From (M 2.7-2.9), the continuity equation in the (s,n) coordinates is

Ju d _ aQ
38 t 35 (Bv) = n s (3.2.8)
and the vorticity is given by
- Z v d ~
curl u = 5 (= - =— (hu)) + 20z , (3.2.9)
- s an —

where z is the unit vector normal to the plane of flow.

Let

curl T = o (x,7,0)z (3.2.10)

in a coordinate system Oxy fixed with respect to flow at infinity.

Then w satisfies

— — - —  2—
B,EH B @y S ;(3__“2’ + "T“Z’ ) (3.2.11)
ot -3 -9y ax 9y
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~ ~

where X, y are unit vectors in the OX, OY directions and v is the

kinematic viscosity. To make the transformation to s,n,t variables,

we note that if
r = (xy),

then it follows from (3.2.1) that

A A

%x.R(s,t) + nx.n

wl
[

¥ = 3.R(s,t) + ny.a (3.2.12)
t =t

so that the Jacobian of the transformation is

h((Z.8)(3.3) - (§.8)(X.3))

o
]

= -h

After substituting for E from (3.2.7), the transformed vorticity

equation becomes

3w . udw . 9w _ Vv .2 3w 3 ,1 %
T *ns vV - & (an (h 5;) * 39 (E-as)) (3.2.13)

or, on using the continuity equation (3.2.8),

3w . 1,3 ,— D, — - 3y _ vV 3, W 3,1 3w
3t + h(g(mu) + E(MV) - wn E‘) = 4 (—a—n-(h on + Bs(h s)) (3.2.14)

The plane curve C given by
r = R(s,t)
in the fixed frame Oxy will now be defined. We have

w(s,n,t) = w(R(s,t) + nn(s,t),t)
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R(s,t) is chosen so that uniformly in s and t, w decays exponentially

as n > = and

f wndn = o (3.2.15)

-l

This choice of C ensures that most of the vorticity lies in a thin
layer containing C. The crucial advantage of this choice becomes
apparent wheﬁ the circulation in the layer is considered.

For the circulation in the layer between the normal through a

typical point O(s,t) on C and the end s = 0 of the layer is

r(s,t) = f hdnds

O—u

i.e., on substituting for h from (3.2.4)

s =<} S @ —
I'(s,t) = [ [ ‘wdnds - [ [ dnds
0 e D e p( t)
so that in view of (3.2.15)
s ®
I'(s,t) = f f wdnds (3.2.16)
0]
Hence, the circulation density is
y(s,t) = %5 = [ (dn (3.2.17)

e

An equation of y(s,t) can be obtained by multiplying (3.2.14) by h and

integrating across the width of the layer.  For

3 7 - a 3 7, = I
‘a_t‘ {m w(l - E)dn + ‘a—s' ;ridnwu)—{ ‘E. - -a—t- p)} { (_undn
-GBifdncl - oyl a“’)+ (1 ——)mv-Gh an Z.=0
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where h has been substituted by the expression (3.2.4). Now  and

Su vanish at #~ so that on using equation (3.2.15),

an

A+ wy = G%z (1-5 -1 3‘” dn (3.2.18)
provided

Ucn_f wdn = 1 wudn (3.2.18a)

where U_ is the comvection velocity. Equatioms (3.2.18), (3.2.18a)
generalise equation (3.2.32) in (M) to the non-uniform vorticity case.
Note that for the inviscid case, the right hand side of (3.2.18) vanishes
and we have a conservation equation for y(s,t).

Further, we need an invariant of motion based on the definition

of the centroid line, (3.2.15),

0 = é% {m wndn
= {m n %% dn

so that on substituting for %% from (3.2.14),

= - T n 3 By o 02 _ —ed 3w 1 Bw
0 = {m{h (as(wu) + an(hmv) wn == v(an(h —) + P ( ))) dn

i.e., after integrating by parts,

- ¢ MDA~ _— 232 _= 3,123 W _ Ve
0 = {w {h(as(mu) wn 2= =V as(h as)) H phz }dn  (3.2.19)

where p(s,t) is the local radius of curvature of C. For a layer with
a straight centroid line C and h -+ 1, (3.2.19) reduces to

0 = g—s(_j-w wundn)- [ Gvdn (3.2.20)

-
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using p = = and g% = 0. The viscous terms vanish in view of (3.2.15).
If at any time t, the vorticity distribution w(s,n,t) is known

everywhere, then equations (3.2.8), (3.2.9), (3.2.18) and (3.2.19)

enable us to determine the flow in the neighbourhood of the centroid

line C. The details are pursued in §3 for a given vorticity

distribution w(s,n,t).
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§3- The inner flow

In this section the velocity field in the neighbourhood of the
centroid line C will be determined, given that the instantaneous
vorticity distribution is w(s,n,t).

We assume that w decays at least as fast as

n

—i) as n + o (3.3.1)
Bi

exp(-

so that the scale of B,(s,t) gives a measure of the thickness of the
vortex layer. To ensure that the layer is thin, we must have, uniformly

in s,
IB,_,(s,t)/p(s,t)l < e (3.3.2)

where p is the radius of curvature of C at position s and € << 1.

It is proposed to determine the flow velocities as an expansion
in powers of €.

The flow in the vicinity of the curve C will be referred to as the
inner flow. To study the inner flow, it is suitable to use the scaled

variables
x = s, y = € n (3.3.3)

Then, the procedure is to expand the unknown fluid velocity u in
powers of €. The expansion will hold in the immediate vicinity of
the curve C, i.e. for [n| << |p| .

However the velocity of the centroid line C is not known, so we
must introduce the expressions

%R
a_t (s,t)

W(s,t) = Ho(x,t) + eﬂi(x,t) + ...

- (3.3.4)
on

-~ 3 (s,t)

m

s,t)s = (Qy(x,t) + ey (x,t) + .....)8



35

as well as

u(s,n,t) = uo(x,y,t) + eul(x,y,t) + ezuz(x,y,t) + ...,
and ’ (3.3.5)
v(s,n,t) = Evl(x,y,t) + ezvz(x,y,t) + .....

The absence of Yo reflects the fact that, to leading order, the layer

is straight. We define a scaled vorticity by
_1 —
e w(x,y,t) = w(s,n,t) (3.3.6)

On substititing the velocity expansions into the kinematic

vorticity equation and comparing terms of order s—l, eo, €y ... gilves

Ju
0 =
5 w(x,y,t)
ou u
1o %
5y (29.O + > ) : (3.3.7)
ov ou u
_1__2 _ _ 1,3
3% 3 (22, + ==+ 35 1)
Hence,
b4 -
uy, = - {m wdy + u(x,t) (3.3.8)
and _ y
u, = (20 +:1-Q-)y-']-" yyfl wdy, + u. (3.3.9)
1 0 p 1 2 1 c

where ;6(x,t), ;i(x,t) are arbitrary, to be determined later on by
matching. Taking the lower limit of the integrals in (3.3.8), (3.3.9)
and in (3.3.11) below,is justified in view of the exponential decay of
the integrand as y + -=. Further terms of order EZ and higher are not
calculated here since it is intended to obtain only a first order

correction to Birkhoff's equation to allow for the vorticity distribution.
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On expressing the contjinuity equation in terms of the scaled

variables and substituting the velocity expansions (3.3.5) in, gives

du 3v1
x 3y - °

(3.3.10)
ox dy ox o] po ox

Here, v is only required to leading order so that using the expression

for u, from (3.3.9),

o
y 5 1 du, _
v = ]y g ] el -y v (3.3.11)

;i will be determined below. Note that Gb, :1 and ;i are terms
independent of & in the expression for the relative velocity at -
and therefore differ from the corresponding functions in (M).

On rewriting equation (3.2.19) in terms of the scaled variables
and substituting the expansions (3.3.5) and expressions (3.3.6), (3.3.7)
in 0(e) terms give,

«©

.27 i}
0 = — {w yuowdy f wv, dy (3.3.12)

which is the same as (3.2.20), as it must be since to leading order
the centroid line of the vortex layer is straight.

Inserting the expressions for Uy, vy from (3.3.8) and (3.3.11)

into (3.3.12) gives
¥y
3 - y g L
0o = = wy{- [ wdy, + uo(x,t)}dy - Jwlf dy; EE'I wdy2

ox . e -0

«©

duy  _
-y — 4+
Y 3% vl(x,t)}dy
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so that, since

f wydy = O
(c.£. (3.2.15)), .
y
L. -] v o Yy 1
- 3 9
VY e - {wu,y -J-'mmdyldy - {m dyw L, dy; 3¢ {w wdy, (3.3.13)
where
v(x,t) = J‘ wdy ,
as defined in (3.2.17). After a little algebra,
- 1 3 7
V]_ T o —— 8_ J‘ A(Y(x,t) - A)dy (3-3.14)
X
Y(X,t) -
where
y
AMx,y,t) = [ wdy

-

The relative flow velocities, to 0(e), near the curve C are now
determined except for the arbitrary functions 56, ;1; these would be
determined, once the boundary conditions as y + *» are made available.
In §4 an 'outer' flow, valid for |nm| >>'[Bi(s,t)|, is obtained. By
matching the outer flow solution in the limit n -+ Oi with the inner
solution in the limit y -+ =, the arbitrary functions of x and t which
appear both in the inner and outer solutions are determined. This is
done in §5.

For later use, an approximate expression for the velocity of

convection of vorticity, U, will now be derived. From (3.2.18a),

and using (3.3.3), (3.3.5) and (3.3.6)

YU

c f wudn

-—C

[ wlu

-

2
o ey teTu, + L, ldy
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On substituting for ug Uy from (3.3.8)-(3.3.9)

[=-] on . y
YU, = {wm[ - {m mdy1 + uO]dy‘+ s_i M[(ZQO + 7;)y -5 {mdy1 { mdyZ]dy
+ 0(e?)
and after using (3.2.15) and integrating by parts,
U = (kv +u.) - i? A(y-A)dy +gu,+ 0(52) (3.3.15)
c 0 Yp 1 Tt

- 00

where A is as in (3.3.14).
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84 The outer flow

In the outer region, i.e. for |n| >>]Bi(s,t)L in view of the
exponential decay (3.3.1), the vorticity is negligible and the flow
is therefore effectively irrotational. It will be characterized by
the mean properties of the vortex layer and will be insensitive to
the actual details of the vo;ticity distribution. Hence, with the
appropriate definitions of the position of the equivalent vortex sheet C
and the circulation demnsity y(s,t), the outer sélution will be identical
with that given in (M). The results obtained there are summarised below.
Let 2(s,t) be the complex parametric equation of the centroid line

C where
z(s,t) = R(s,t), §+ ig_(s,t).i (3.4.1)

with R(s,t) as in (3.2.1). Then, in terms of the intrinsic coordinates
(s,n), points z', z' = x' + iy', can be written

z' = 2z(s\t) + in'e™® (3.4.2)

where o'(s',t) is the inclination of the tangent é(sit) to the OX

direction. For each z' there is a unique a' provided |n'| << p(s,t).
If now the flow in the outer region |n| >>|Bi(s,t)|is regarded as

being irrotational, the velocity at z can be expressed as an analytic

complex function
q(z,t) = ulx,y,t) - iv(x,y,t) (3.4.3)
where u and v are the components of E in Oxy frame. Then

() @'(1 - g;)dn'ds'

. a
q(z,t) = 5% g f

(3.4.4)

z - (Z(slt) + in'eia')

where ' means that the quantity is to be evaluated at (s',n') and where

the range of the integration with respect to n' is extended over the
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inner region.
Since

nl

|z - 2'(s,t)]

< 1,

the integrand in the inner integral in (3.4.4) can be expanded and

integrated term by term to get

] ] ]
( L atp Lpeyrest 8 el 1 I
q(z,t) == | ——ar— - 5= { - } Jo'y'dy'ds' +
m oy 272 2 (z-D7 p'(z-2z') =

+ 0(e?) (3.4.5)

where the inmer variable y = n/e has been introduced and the limit of
the y integration has been extended to (-=,x) in.the convention of
boundary layer theory. The integrals in the 0(82) term can be shown to
remain bounded as z + Z(s,t) so that (3.4.5) is uniformly valid in z.
Now, in view of the definition (3.2.15) of the centroid line C, the
0(e) term vanishes. Hence the error introduced in replacing the vortex
layer by an equivalent vortex sheet at C is 0(82).

This is a familiar result in boundary layer theory where the effect of .
the boundary layer is taken care of by considering the surface to be

at a distance 61 above its true position, 61 being the displacement
thickness; the error introduced is 0((61/2)2), 2 being a typical length
scale,

For z satisfying|8+|<< [z - Z(s,t)l << p, on writing
z = Z(x,t) + isyela’ (3.4.6)
(3.4.5) becomes

-i a(?) y(x',t)dx'

2w

q(z,t) ™ + 0(e (3.4.7)
0 Z(x,t) + ieye'® - Z'
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The integral on the right hand side is analytic for y > 0 and y < O
but is discontinuous across C. The limits as y =+ O_ can be obtained
by making use of the Plemelj formulge. Hence the inner limit of the
outer solution can be written
. 3Q,(z,t)
+

a(z,t) = Q,(z,t) + ieye’® —E——+ 0(c?) (3.4.8)
where

Q,(Z,t) = 1lim q(z,t) {from * side of C}

z+Z

From the Plemelj formulae,

. a(t) .
_ =i y (x',t)dx' — -ia(x,t)
Q,(z,£) = 3= é e T = 2Dy F Ev(xstle (3.4.9)

where the slash denotes Cauchy principal value.

This is to be matched with the outer limit of the inner solution
obtained in §3; the details are pursued in §5.

For latter use, the integrand in (3.2.18) may be expanded in

powers of n/p and integrated term by term to give, in view of (3.2.15)

and (3.2.17)

2 () - 31331 + 0(e)) (3.4.10a)
5t 38 Y c a52 E 4 a

where Uc is defined by (3.2.18a) and given in terms of the inner flow
by (3.3.15). We now restrict ourselves to the cases where either v
is zero or when the thickness of the layer is 0(($T)%) where T is a
characteristic time of the motion of the layer. This implies that

right hand side of (3.4.10a) is 0(62) so that

Y . B _ 2
2t 55 (YUC) = 0(e) (3.4.10)
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The restriction also implies that the vorticity equation (3.2.14) to

leading order is

- - - 2
w  duw) . 3vw) _ — 3w
et 35t om v —5 (3.4.11)

on

Equation (3.4.11) imply that for flow at high Reynolds number, the

boundary layer equations determine w to leading order in €.
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§5 The equation of motion of the layer

From equation (3.2.7), the velocity in the vicinity of C
(|n| << p(s,t)) is given by

R A oa
u o= oo+ (u - Qn)s - vn (3.5.1)

In complex notation this is

I _ az* -iea . -i¢
q (z,t) = Eraid (u - fn)e - ive (3.5.2)

As in (3.3.4), the unknown time derivative of Z* is expanded in powers

of ¢,

2" _ o* *
e = IIO + s.II1 + ... (3.5.3)

Then in terms of inner variables, and expansions (3.3.4)-(3.3.5),
-ia

qI(z,t) = II; + uge + é{ﬂ; + (ul-QOy-ivl)e—la} + O(ez)

(3.5.4)

In the limit y + %=, equations (3.3.3), (3.3.9) and (3.3.11) yield

v+
uo(x,im,t) = (3.5.5),
;b
I Yy
up (x,te,8) = (20 + To)y vu =] (3.5.6)
and
- i
auo _ .{y 9x
vl(x,i°° t) = -y w vt o (3.5.7)
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In (3.5.6) and (3.5.7), the terms proportional to y are those which
would be present in the irrotational flow in the vicinity of a vortex
sheet. It is expected that the terms independent of y arise due to
‘the distribution of vorticity in a layer.

Substituting expressioms (3.5.5)-(3.5.7) inté (3.5.4), we require
that for fixed y qI(z,t) must coincide with (3.4.8) as e -+ O,

The 0(1l) matching gives

- 3 (t) ' '
H; + (v + up)e e - - -2-1’-; 2)( v(s',t)ds (3.5.8)

z(s,t) - Z(s',t)

This is as in (M); note, however, that the definition of Gb is different

here.

In the 0(e) matching, as may be expected, the terms proportional
to y reveal no new information. However, for conmsistency, these must
be matched and this is checked in Appendix A. Matching of terms

independent of y gives

mo+ Gy - iv))e™® = o (3.5.9)
Hence, from (3.5.3),
YA i a(t) v(s',t)ds' : - - .= -ica 2
3t 2% 5 Z(s,t) - Z(s',t) {5y + Y * E(ul_lvl)}e + 0(e™)

(3.5.10)

It is convenient to introduce Birkhoff's circulation coordinate T.
Suppose s(TI',t) is the afc distance aloﬁg C to a normal section which
has constant net vorticity T between it and the end s = 0 for t > O.

Then \

I'(s,t) = y(s',t)ds' (3.5.11)

O—nn
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so that
38 $ 3y \
0 = «v(s,t) (—B?)I' + E’;—t-— ds (3.5.12)

Now from the circulation demsity equation (3.4.10),

oY _ 3 '
ot o8 (UcY)

On substituting for 9Y/3t in (3.5.12) gives
]
0 = y(s,t) (3%) - U_v(s,t) (3.5.13)
so that, since y(s,t) # 0 for s # 0, a(t),
s _
(=), = U (3.5.14)

2t'T c

Hence if T',n,t are the new independent variables and we write

z(r,t) = 2(s,t)
u(r,t) = v(s,t) ' (3.5.15)
A(T,t) = A(s,t)
then
) ) )
(EE)P = 5+t U. 35 (3.5.16)

The function u. + eu, can be eliminated from (3.5.10) by introducing

o) 1
U, from (3.3.15) so that on substituting for ;i from (3.3.14), (3.5.10)

becomes
YA —ia _ i a(t) v(s',t)ds' Nl _ .3 7 _
7tV Tt mm oG ot Ty Gl a0 gy [ aGenam)
2
+ 0(e”) (3.5.17)

or in terms of I',n,t, on noting that

1 2 i
.1, %E i g é% = U g% (3.5.18)
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92 i e ar' 9 oe* 7 A, o« 2
3Tt = md mroeao -t Uar [ 20D+ oteh
(3.5.19)

Now from (3.5.18), it follows that

io  _ 9=

= Usr
where a(s,t) and U(T,t) are real so that
= - .5.

Thus U(T,t) can be determined from the instantaneous configuration of
z(T,t).
®

The function [ A(U-A)dn characterises the distribution of vorticity
in a layer so that-:he instantaneous value of w or A needs to be known
before it can be determined. In the next section an equation for A is
derived.

If all the vorticity were concentrated in a sheet at C, the term
in [ ] in (3.5.19) vanishes and we recover Birkhoff's equation of motion

of a vortex sheet. It may be noted that the correction term can be

written as

. D 3 3s*,
isF 18, U BTrq | (3.5.21}
where
_ T A4
8y = I g (1-g dn (3.5.22)

62 can be identified with the momentum thickness of the layer if we

define the momentum thickness as
© (Uz-u)(Ul-u)

§, = | dn
2 2
e (U,-U,)
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where U,, U, are respectively the "streamwise" velocities at i«
and u is the local component of velocity tangential to C. 1In appendix B
it is shown that Sy satisfies the boundary-layer type energy equation.
Moore (M) has shown that linear and angular impulse are comserved
by the solutions of the modified Birkhoff equation in the case of a
uniform distribution of vorticity. His argument can be used to show
that these still hold good for solutions of (3.5.19) when the vorticity
distribution is non-uniform. Moore also derives a modification to
Kirchoff's invariants for the uniform vorticity case. In Appendix C
this has been extended to the non-uniform vorticity case. The final

result is (C3.8)

r
~ o] e _ e o _
&Gy - = [ vs,ar) =y | i J 52dndl + 0(e?)
dt 0 2 2 U
0 0 -—co
where
r r
~ Py € e
Wy = -5 | | loglz(r,t) - z(r',t)]drar’
0 8r o o

PoV+ Hence an invariance

o being the density of the fluid and u =
is obtained if v = 0.
Finally, for later use, the circulation density equation (5.4.10)

can be written in terms of I',t variables as

2
U . U7 9 ~ =

where uO(P,t) = Gb(s,t).
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§6 Equation for K(F,n,t)

Before (3.5.10) can be used to evaluate the instantaneous position
of a point on the centroid line corresponding to I', the instantaneous
value of w(T,n,t) or A(I,n,t) must be determined. Since w appears
in the 0(¢) term in (3.5.10), it is only required to leading order
in €. As remarked in §4, w to this order is given by the boundary

layer equation for vorticity (3.4.11), viz.

— -2
3w ] — 3 - _ Vo w
Y + E (um) + 'E (vw) = anz (3.6.1)

where the leading order terms in u and v are implied.

Integrating (3.6.1) across the layer gives

3l ] — — = Jw

— = ! = - -9

3t T 38 !w uwdn' + vuw Voo (3.6.2)
using w = g% = 0 at n = -». The constant of integration is zero in

view of the circulation density equation (3.4.10). Then substituting
for u and v by the leading order terms in (3.3.8) and (3.3.11) and

using (3.3.14) gives

2 n du 2
88 _ 084 | 3.7 _i o 0 _13 _ =3
T % s * as(uOA) + [a fm dn Pl 3;62] v ;;7 (3.6.3)

vhere §, is given by (3.5.22).
Thus, writing in terms of T',n,t variables and using the circulation

density equation (3.5.23) gives

A ~

v? 3

P 30 , 38, B L .n U, _ 3
3t T 37 7 (B(u-3)) - EE’E M T o) f Mdn' + ( - T T area]
2A
- va—g- (3.6.4)
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-1
Since U = Sz ,
3
W - g re(E 2 )
3t &Y3T Star

so that, in view of (3.5.10),

aw _ .3 98 9T
3 = U Re (323 ) + 0(e) (3.6.5)
where :
I = - i -;5 ar'
2 0 g(Ir',t) - s(I'',t)

Hence (3.6.4) becomes

A A n a6
24 2 (A(U-4 3 (g2 [ Agqp -DLA__2
st T2 3p(AU-8)) + = (U o {m Mn' - F o5 - 570 )
= 3’33& - 0% Re(2E 2)(3 - n EA) (3.6.6)
o2 aT ar an e

The boundary conditions are:

(a) A -+ U(I,t) as n + =, A+0asn -+ -

(b) A+0as T+ 0, Pe

(&) 22 = olexp(~{n|MB,(T,tM) as n > im .

Thus for a given initial distribution, A(T,n,0) = &o(P,n), equation
(3.6.6) and the above boundary conditionsspecify A(T',n,t). In general,
the problem of evaluating &(P,n,t) is a formidable task and would have

to be solved numerically.

In §7, equations (3.5.19) and (3.6.4) are linearized to consider
perturbations on a straight vortex layer of arbitrary steady velocity
profile for the case v = 0.

In §8, the equation of motion of a vortex sheet undergoing viscous
diffusion is obtained and growth of small perturbations on a Rayleigh

" layer is studied.
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Meanwhile,it may be noted that if w = ¥y a constant for
-A(T,t) < n < H(I',t), w = O otherwise and v = 0, then
v

2m0

A = ;6(n + H) and H =

On substituting this into (3.5.19), we recover Moore's equation

(M(4.20)) for the motion of a thin vortex layer of constant vorticity.
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§7 Growth of long waves on a straight vortex layer in an inviscid
fluid

In this section instability of an initially straight and steady
vortex layer in non-viscous fluid to disturbances of wave-numbers k,
k/k1 << 1 (where k1 is as defined below), is considered using the
equations derived in §§5,6. The results for the growth rate are
compared with Drazin & Howard (1962).

The vorticity distribution in the unperturbed layer is taken to be
wo(y), where (x,y) denotes position in Cartesian coordinate system OXY
with the centroid line C along OX for t < 0. In view of equation
(3.3.1), it is assumed that wo(y) + 0 as y =+ *= at least as fast as
exp(—kllyl). Suppose the streamwise velocities at y = = are F V/2.

Then the perturbed centroid line can be written,

g(T,t) = V.-1

T + £(T,t) (3.7.1)
where |3f/3P| << V—l. The integrated vorticity function A is taken to be

A(T,y,t) = By(y) + A'(T,y,t) (3.7.2)

y
where Ao(y) = {m wo(yl)dyl and [A'] << IAOI, unifqrmly in y.
On substituting (3.7.1) and (3.7.2) into (3.5.19) and (3.6.4),

with v = 0, gives on linearizing

*» e
.2 ® PP v sy a2 2
gi - ;Z 1£(T,t) f(Pz,t)]dP . %g Mo{a g _ 3 g } o~ iM' (3.7.3)
- (r-r1") ar aT
3A y 3A
b’ 2_ ' o A" 1 = 9 _ x
st ¥ (VTVAY) G+ Y {w 5T dyy t M1 =V = - 4g)
2
3 v 3 of
(EE 5 EF) Re[ar] (3.7.4)
where

- b — ' - T - .?-A-'-
My [ a,v-ady , M 2 {w (V-8,)55 dy

-0
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In order to consider sinusoidal disturbances, f and A' are

chosen to be

LTy . T
£(r,t) = &t (a, ek Al +ae ik /V)

(3.7.5)
t iK' /v —ik v
a'(r,e) = et (a (y)e’ + A_(y)e )
where a_, 4, have complex values, a_ being constants.
On substituting (3.7.5) into (3.7.3) and evaluating the principal

. ) ) . ot=ikT
value integral by contour integration, terms proportional to e trikl/V

can be equated to yield,

ca:_= 531;321 a_ - %{ ?m(wl-:ifz;wz) dy ](a_-a:) - [1555557 Im (w;-w)4_dy]
(3.7.6)

oa’ = fflifgl a, % ? (wl':zfz;wzzdy] (a,-a_ *) + [z;r%azj ? (wl-w)A+ dy]
(3.7.6a)

while from (3.7.4),

= Gy SN *

whA_ - w [fm A (y)dy1 + 2 f T’Z—)A dy] = 2(w~w2-yw')(a+ + a_)

(3.7.7)
© (wl-W)

(20-w)A, + w [f 8,(y))dyy + 2 f ——————7A+(yl)dy1]

Wz , *
= - T (w—wz—yw )(a-+a+) (3-7.78)
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Here
w(y) = o - ik(% - A _(y))
72~ %
w. Zw(=) = o+ ik % (3.7.8)
1° 7 L
L2 = w(-w) = ¢ - ik %

and ' denotes differentiation with respect to y. This notation is
consistent with that of Drazin and Howard.

On noting that
(20-w)* = w, vy = Vg,
the complex conjugate of equation (3.7.7a) can be written

o (w-w) Wy .
A, dy1] = TZ(W-WZ-YWI)(3+ +a ) (3.7.7b)

3%
wa* - w'[ [ Aldy, +2 [ ——
+ o + 71 e (wl-wz

which is identical with (3.7.7). Hence

Ay (y) = a_(p) (3.7.9)

is a solution.
The solution of (3.7.7) is straightforward and is given in
Appendix D. If this solution is substituted into (3.7.6) and, in view

of (3.7.9), into the complex conjugate of (3.7.6a), then after a little

algebra,
F W,~W F
_ k 1 S k P 1 *
g (wl-w25 ( 7 T FZ) ( 7 (wl-wz)‘FZ 2)) a,
Fy =0 (3.7.10)
wmw, k(F,- 7?) * (Ei

7 Cwy — w,) o+ Cay ) 7 * Fp) a_
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where

F, = {m (w—wz)(wl-w)dy
© (w—wl)(w-wz) ‘
F, = {m 2 (2(w1+w2)w + wlwz)dy

Then setting the determinant of the matrix in (3.7.10) to zero gives

the dispersion relation

2 2 2

(w.-w )2 = (w 2 23 (w2—w?) o (wy=w) (w-w,)
G2, 42 % [ ) v, K2([ 1 i 2’5
—c w — (wl—wz)
o (w—wl)(w~w2)
x [ 5 @(w +wy)dw + ww))dy = 0 (3.7.11)
T w

The last term on the left hand side is evidently of the O((%L)Z), since
1
the coefficient of K2 is 0(622), where 62 is the momentum thickness of

the layer, and for consistency cannot be retained; terms of that order
have been excluded from the governing equation (3.5.19) and (3.6.4).

Hence, on noting that

(3.7.11) becomes

2 2
(wl +W, )

2

(wz-wlz)(wz-wzz)

Lk % 2, 2
+ 5 { = 0(k“s

5 ) (3.7.12)
w

This is in agreement with equation (2.9) of Drazin & Howard (1962).
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§8 The equation of motion of a viscous vortex sheet

Here, the effect of viscous diffusion of vorticity on the motion
of an instantaneously created arbitrary vortex sheet in flow at high
Reynolds number is considered. A solution, valid for small times, for
the vorticity distribution is derived and hence, using (3.5.19), an
equation of motion of the sheet is determined. The equation is used
to study the growth of long waves on a Rayleigh layer.

For flow at high Reynolds number, the equation for the vorticity
w is given by the boundary layer approximation (3.6.1). However, it
is convenient to express the equation in terms of T',n,t variables.

Thus on differentiating (3.5.4) and using the continuity equation gives

- - n du — 2—

ow 2 ~y oW 9 ~ 2 0 9 ow — 9 W

—_— - —_— — - —_— —_— — .8.
ot (53U Ua) 5T + [U 5T { Adn nU ST 3?62]3 v X > (3.8.1)

where now w = w(T,n,t), 8, is given by (3.5.22), U,S are as in (3.5.15)
and where the circulation density equation (3.5.23) has been used.

In view of (3.5.23) and (3.5.20), the circulation denmsity U(T,t),
to leading order, depends on the configuration of the vortex sheet and
e#ternal flow field. It is insensitive, to this order, to the details

of local vorticity distribution. Thus w(l,n,t) may be written

w(T,n,t) U(r,e)w(r,n,t) (3.8.2)

where

1 + 0(e)

® o~
f wdn
-—C0

In (3.8.1) the rate of change of vorticity at a station I' along
the sheet is governed by viscous diffusion and convection relative
to the vortex sheet. It is expected that initially, the influence of
the former will far outweigh that of the latter. Thus the equation

for Wy, the first approximation to 5, is



24

'3_1=3
at on

and the required solution is

=1 and w, *0 n > t= ,

This satisfies f &1 1

-0

approximation, put

and substitute into (3.8.1). This gives

dw, _ 32‘:’2 35U 2~ . AU\~
5t - VT3 = (g * U0 -14) pug+
an
n Su, ©
P ~ 2 0 ]
+ [Uﬁ_‘[mAldn-nU- a—'—ﬁ-{
Y n -~

where 4, = U ] mldn.

In view of (3.5.23) it can be shown that

- tu U
Wy = —T5F {2Vt nerf n(l - erfn) +
2 2(3t) or :
s B s a2 - B -
2
- t %% (n2 - ke "
2u(ot)

=]

This satisfies f Gz = 0 and az + 0 when n + %= .

of (3.8.5),

EE2q + £, o

f A(U-A)dn 50 Bt

s

A (U—Al)dn]

=]

v
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(3.8.3)

(3.8.4)

To obtain the second

(3.8.5)

" 1
1

a2
ne

2/7

- (2 - Berf n1}

(3.8.7)

Thus, in view

30,2
Ak (3.8.8)
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Then since, from (3.6.5)

U _ dg 3l
Tl -u3 Re(ar ar) + 0(e),

substituting (3.8.8) into (3.5.19) gives

*
3 (r,e) = 1 - 15T 20?2 n - wfredE 2y 4 oer 2y + o(ed)
(3.8.9)
where
re
I = - fL f dT :
L a(r,t) - &(Tr',t)

Equation (3.8.9) is the main result of this section. The rest of
the section is devoted to considering the growth of long waves on a
Rayleigh layer.

Suppose that instantaneously at t = O an infinitely long straight
vortex sheet of constant strength V is created in a fluid of viscosity v
so that if undisturbed its configuration would be given by 2= TV ~,
Suppose now that at t = 0 the sheet is so disturbed as to assume an
instantaneous shape‘

g(r,t) = rv'1 + £(r,t) (3.8.10)

where laf/arl << V_l. It is proposed to study a particular form of
disturbance £(I',t). If (3.8.10) is substituted into (3.8.9) and only

terms linear in f are retained, then after a little algebra, we have

3¢ 3,.29e.5,3 3%F . 1 a°fF 8Ly 2
e - I, + iv (—;—) (E';—E 3 arz + t Re(gf_)) + 0(€°) (3.8.11)
where
el
- iv [f(rst) - f(r',t)] '
L, = 27 f dr

—»  (r -1")?
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f(T',t) is chosen so that it represents a sinusoidal disturbance

- of spatial wavenumber k, viz.,
., T .. T

aelk /v + be ik /v (3.8.12)

f(r,t) = b

where a(t), b(t) are complex valued. On substituting (3.8.12) into

(3.8.11) and evaluating I, by contour integration, terms proportional

—=T
to é+1k v can be equated to give
da* _ ivk,. _ . 2vt.} * vk *
T - 3 b - k(=) v a + = (b - a)])
(3.8.13)
ab* _ ivk 2t % *  ivk *
T - 3 a-k(=5)73a + b + 7= tla-b7)])

The form of equations (3.8.13) suggests that a possible choice

of solution is
a(t) = b(e) = alt) + ig(t) (3.8.14)

say. This choice is not unique (e.g. a = -b is also a solution) but it
will suffice for our purpose.

Putting (3.8.14) into (3.8.13) and equating real and imaginary

parts give
i = -%a- 2k(£§£)%}6 (3.8.15)
, | _ 23 .
Bo= -2 0 - B - TEEEN 5 (3.8.16)
™ ™

where the dot denotes differentiation with respect to time.
It is convenient to express (3.8.15), (3.8.16) in non-dimensional

form. Write

alt) = a(0)a,(t;),  B(t) = a(0)B, (t,) (3.8.17)

_ 2
t = &t
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and define a Reynolds number R = 7V/vk. Then (3.8.22), (3.8.23) become

a . t
@ = - {1- A(Tl)%}sl (3.8.18)
£ 2t 3/2 :
- 1 1
B. = - {1 - 8(HHT}a. - B. . (3.8.19)
1 R’ % E b

The choice of the Reynolds number R above means that the
approximation in € leading to the governing equation (3.8.9) is valid

for t; << R. The approximate solution to the vorticity equation is

1
valid for t; << 1. Equations (3;8.18), (3.8.19) therefore hold when
both conditions are satisfied.

The equations were integrated numerically for a range of values
of the Reynolds number with initial conditions al(O) =1, 81(0) = Q.
The integrations were carried out up to t, = 0.15R although the results
are strictly true for t1/R << 1. The results are displayed in
Figs. 3.2, 3.3. Fig. 3.2 shows a plot of amplification rate
ala vs. (tllR)% = k(‘g—;)% for R = 100, 500, 1000, 2000. The amplification
rate achieves a maximum at (tllR)% = (t1/R):ax which is quite outside
the range of validity of the governing equations. However, it is
interesting to note its dependence on R which is displayed in Fig. 3.3(b).
(tI/R)Eax decreases with 1/R and at R=200D -thag a value 0.031. This
implies that in fluids of small viscosity v, the waves of wavelength A
on a R;yleigh layer grow fastest when t = 0.000lSAzj;. Also displayed
in Fig. 3.3 is the dependence on Reynolds number of (tl/R)E, the value
of (tllR)% > 0 when @ vanishes although (tl/R)E is outside the range of
validity of the governing equations; (tl/RZ?decreases with 1/R and a b
R-2ctc WhWad™ a value 0.125. This implies that waves of wavelength A
stop growing on a Rayleigh layer of small viscosity v when t = O.OOZAZ/;.

Figure 3.2 shows that for (I:I/R)35 > (tI/R)f, @ vanishes again when

(tllR)% = 0.25. This can be inferred from (3.8.18) where the right
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hand side vanishes at this value of (tI/R)%. It is believed that

this is a spurious effect and is a consequence of the truncation in

the expanéion in € made in deriving the governing equation of motion
of the layer. The effect corresponds to that found by Moore (M) in

the uniform vorticity case when equations corresponding to (3.8.18),
(3.8.19) for that case were used to study growth of long waves on a
straight layer. As Moore points out, the appearance of this spurious
effect means that any attempt to integrate the modified integro-
differential equation (3.8.9) will be faced with a serious difficulty.
For, even though the value of (tllk)% = k(ﬁt/Zw)% at which the spurious
growth appears is quite outside the range of validity of (3.8.9),

short wave disturbances, which will be excited in any numerical
calculation, will be amplified. A possible remedy to the situation is
to obtain a higher order correction than 0(e) to the governing equation;
hopefully this would suppress the spurious behaviour. The matter is

pursued in the next chapter.
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§9 An interpretation of equation of motion (3.5.19)

A simple interpretation of the modified Birkﬁoff equation (3.5.19)
can be given as follows.

Consider an element of the layer with local radius of curvature
p(s), where s (defined below) is associated with the particular element
chosen, and let Q(s) be the local centre of curvature. Let P(s) be
the centroid of the vorticity distribution w(s,y) in the element.

The surfaces AC and BD (see Fig. 3.1) are chosen so that the vorticity
there 1is effectively‘zero; this is always possible in view of the
exponential decay of vorticity (cf (3.3.1)) as QP is traversed away
from P. Let the distance from P to AC, and from P to BD measured along
QP be 6_ respectively. The element is assumed to have length ds (see
the fig:re); s being identified with the arc-distance measured along

the line joining the centroid of each element.

If y is the distance, measured along QP, from P, then

o«

[ wyy = o . (3.9.1)
Suppose the jump in the tangential velocity across the element is -y(s).
Then for flow at great distances from P, the element can be represented

by a point vortex of stremgth y(s)ds at P. If in a coordinate frame

fixed with respect to flow at infinity the position of P is given by
x = E(s)

then in the absence of any distribution of vorticity
(i.e. if we have a vortex sheet),

3R

a_:(S) = YOE(UO, vy (3.9.2)

where Y is the velocity induced by the other elements of the layer

together with the velocity with which P is convected along the sheet.



62

(3.9.2) is essentially Birkhoff's equation (3.1.1).

Suppose that when the vorticity is distributed in a layer, the
velocity contribution from all the other elements of the layer to the
element at s can be regarded as due to an appropriate distribution of
point vortices. Then the distribution of vorticity in the element at s
will give rise to an extra velocity at P(s), given by

aR

(u,,v) = a—: - (U, V) (3.9.3)

It is asserted that the existence of this extra velocity produces a

force on the element given by the Kutta 1lift and the local pressure

gradient,
3p _
vds(U ,V,) A k - ds_(a_s~ » 0) = (F,G)ds (3.9.4)

assuming that the fluid has unit density and that the pressure P remains
sensibly constant across the layer (see below). Then, provided (F,G)
and %E can be found, (U;V,) is determined.
If the fluid velocity in the neighbourhood of P is (u,v) relative
to (UO,VO) and if u 4-56(9) as y + -», then, since the jump in tangential

velocity across the layer is -y(s), u = -y(s) + ;b(s) as y + 4=,

Assuming that é% << g% , (u,v) satisfies the curved boundary layer
8

type equations (which to 0(7?) are of course the same as that for a flat

boundary layer). To 0(75) the pressure in the layer is constant so that

= — 2
: 3 du_ .
aP - 0] l 0 - _a_ _ — -]:'i _ - .2
38 - 36 T3 e - 36 CY*ru) 35 -y +ud” (3.9.5)
so that
=t (Ey+ T = o | (3.9.6)
at as 0 )

which is the circulation density equation (cf. (3.4.10)).
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For simplicity let Gb £ 0, so that %E = 0. Then, using the Kirmén
type argument (Goldstein, p.13l), it can be shown that the total rate
of change of momentum in the tangential direction inside ACDB, considered

as a fixed surface, is given by

S, . - | 6+
[ J- _22 a9 j‘ u(y+u)dy - ﬂ j' udy ] ds- - (3.9.7)
-8 t 3s —c0 9s §

This must be equated to F since the viscous forces give zero contribution.

- y _
Since u, = 0 and u = [ W dy, approximately, integrating the first
- 00

and the last terms in (3.9.7) by parts and using (3.9.6) it can be

shown that these terms cancel. Hence, from (3.9.4) and using %%{= o,

[+ K3
w

f A(y-A)ay (3.9.8)

<
"
<IH

In order to contain the momentum flux in the tangential direction

and maintain the inward mass flux from BD in circular motion at tangential
(-]

speed -y, i.e. a net momentum flux, -ds [ A(y-A)dy, a force

=00

ds [ A(y=A)dy
- — . (3.9.9)

is required to act upon the ¢léwent along PQ. This is provided by G

so that from (3.9.4), we have

[+
1
U, = — A(y-A)d 3.9.10)
1 o {m (y-4)dy (

" Both (3.9.8) and (3.9.10) are in agreement with the corresponding values
in (3.5.17). 1It may be noted that the curvature affects only the
tangential velocity whereas the net change in momentum flux along the

tangent affects only the normal velocity.
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APPENDIX A: Matching 0(e) terms proportional to y

For consistency, terms of 0(e) which are proportional to y in
the outer solution (3.4.8) must be matched with those in (3.5.4).

Thus it is required that

. 9Q.- u du .
AT s o_1__ .. . ~ia
ie™ 7= (QO + > Y- igprrie= e (A3.1)
and
. 3Q u u
. 1o - _ 0 . 0
1le —B-E' = QO + —p + 1 —ax (A3.2)

Since Q,_ is amalytic, it can be differentiated in any direction so that

3Q . 9Q
= = JTla _*
7 e = (A3.3)

Then from (3.4.9) and (3.5.8)

&

Q. oIl -ia 9 - - 9a -ia
W T TS a T Yy rily-ug) e (43.4)
and since
9Z* _ -ia do.  _ ¢ _ 1
m - © o 3t = % 3% S (A3.5)
3Q e . %u u
+ _ .. =ia -ia o_23 .X¥ _ "o
= = —ifge + e - =+ 1(p p)) (A3.6)

Multiplying (A3.6) by i and using (A3.3), it follows that the left
hand side of (A3.1) agrees with the right hand side.

Similarly, (A3.2) is also true.
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APPENDIX B: Energy equation

§,, as defined in (3.5.22), can be shown to satisfy the boundary
layer type energy equation as follows.

Multiplying equation (3.6.3) by Y and integrating across the
layer gives

20u R
fyar uy ==[va + [yav]

5
_a.EIYA-—IYA +
-'{(41 + u 41)I A - %%f 22} = o (83.1)

after an integration by parts and using (3.3.1) and (3.3.14). Thé
integrals in (B3.l) are with respect to n and extend across the vortex
layer. [ ] denote jump in value across the layer.

Similarly, on multiplying (3.6.3) by A and integrating across

the layer gives

5 38uy -7 =2
atA——fA +—-fA +u—fA+[Av] =-2vfmdn
-0

(B3.2)

On subtracting (B3.2) from (B3.l) and using the circulation density

equation (3.4.10), gives

38u 0
j A(y-A)dn - —— j A(y=4)dn

[--] [--]
- 9
- Im A(y-8)dn + u, r {m A(y=A)dn +

-2 [ A(y-mdan =25 [ WPan (B3.3)

or introducing 62 and writing in terms of T,t variables

6

2 3 13 3, y_09
" = (TT) + 5 =7 (078,) = = (U 25 3T f w2dn (B3.4)
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where the equation for circulation density has been used to eliminate
du

Ve and where 63 is given by

63 corresponds to the energy thickness of the boundary layer theory.
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Modification to Kirchoff's invariant

A modification to Kirchoff's invariant for a vortex sheet to allow

for a uniform distribution in a layer of small thickness was obtained

in (M). This is extended here to the

distribution.

case of a non-uniform vorticity

For a vortex sheet, Kirchoff's invariant is

o o I‘e I‘e
W, = -=— [ [ log|z(r,t) - =(r',t)|drdr’ (c3.1)
o) 8t
o) o)
where Po is the density of the £fluid.
A short calculation shows that
~ T r
dw o] e e '
o _ _Po 9z : dr
yre 5. (R = (T,8) { g TR ET6HO) }rj (c3.2)
Then from (3.5.19) and (3.5.21),
dﬁ o} I‘e *
o _ _Yo . 9z 38* _ , 3z 3 33
& ~ " rte g (2mi 32 36~ 27 3¢ o1 (82 e?))ar
| (c3.3)
where 62(P,t) is as in (3.5.21). The first term in the integrand, being

pure imaginary, gives no contribution

so that, integrating by parts,

~ r

;:Q _ ;g Z 62U3 (%%: %;%% +'§; gi;t)dr + 0(e?) (c3.4)
and since

T
dﬁg oo Te 55 au?
T ° 3 é < 3¢ 4f + o(e?)
. Te' . : (c3.5)
= 5 I{T(GU)'U T(-IT)}CH'-PO(E)



The second term in the integrand in (C3.5) can be eliminated by

using (B3.4) to give

r r

~
i..(w_

2o
dt "0 2

O—n0n
[}
(=]
N
(=1
-1
~
[}
|
=
O—n
~
(=1

] Eadn)dr + 0(52)
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(C3.6)



APPENDIX D: Solution of integral equation for A_ of §7

Equation (3.7.7) can be written

- ]
i 17 2t (w1 w) v (wwy=yw')
I (w [ &) - 7 —o—Ady = 5 —— (a_ + a) (p3.1)
I w -1 72 w
so that
©  (w,-w) w y (ww,~yw')
2w' 1 1 * 9 2
A_ = f = A (y )y, + = (a_ +a_) — [w 1 (Dp3.2)
Yy e W17V 1 1 2 + 3y lw w2
(D3.2) is of the form
A (y) = K(y,yl)A_(yl)dy1 + G(y) (D3.3)
with
( ) (wl-w(yl))
Kly,y = _ZE:(Y) T —
1 Wy WY,
and
Y w-w,-yw'
_ * .9 2
G(y) = ﬂ(a+ + a ) 3y [w Im —:T'— dy]

2

Then K(y,yl) is degenerate and so if
B; = {w (wl-w(yf»A_(yl)dy ,

multiplying (D3.3) by wl-w(y) and integrating with respect to y gives

o -]

/ w' (w;—w)dy) = (w;=w(y))6(y)dy

-0 - OO

WiT¥

Hence,

o

2 [ Guw(y)ety)dy (3.4)

-wz)(2w2-w1)

A_(y) = G(y) + (wl
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CHAPTER & : HIGHER ORDER APPROXIMATION TO THE EQUATION
OF MOTION OF A VORTEX LAYER

§1 Introduction

The equation of motion of a vortex layer derived in Chapter 3 is
valid provided the thickness of the layer is small compared with the
radius of curvature of the centroid line. Thus (3.5.19) describes the
motion of long waves on a vortex layer fairly well. It might be thought
that with a suitable choice of vorticity distribution (e.g. uniform
vorticity in a thin layer), (3.5.19) can be integrated.numegically to
study the evolution of such waves. However, in any numerical calculation
short wave disturbances are bound to be excited numefically and it is
necessary to determine the behaviour of these disturbances. The
situation is similar to that of Kortweg-de Vries equation (Benjamin,
et _al. 1972) which is asymptotically valid for long waves, but which
displays a spurious instability for short waves.

In the case of a non-viscous uniform vortex layer, Moore (1978; (M))
has used the modified equation corresponding to (3.5.19) to consider
sinusoidal disturbances to an initially straight layer and has obtained
the growth rate of such disturbances. This reveals that short waves
are strongly amplified. From the analysis of Ch. 3, §8, it would
appear that thevsame would be true in the case of a non-uniform vorticity
distribufion. Thus any numerical work involving the equation (3.5.19)
would be faced with a serious difficulty.

From Moore's analysis it is apparent that the difficulty is purely
an artefact of the truncation in the expansion in e, made by neglecting
terms of 0(82). Hence a possible remedy is to obtain a higher order
approximation to the governing equation in the hope that this would

give a suitable growth rate for disturbances to the solutions of the
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governing equation. This is pursued in the following sections of this
chapter. For simplicity, the analysis is restricted to the case of a
non-viscous vortex layer of uniform vorticity and finite thickness.

Thus in this chapter the matching achieved in (M) is extended to include
higher order terms; in fact, terms up to 0(83) are included in the
analysis.

The inmer and outer solutions to 0(83) are obtained in §2 and §3
respectively and are matched in §4 to obtain the equation of motion.
The higher order terms are checked against known solutions of the
equation.

In §5, the derived equation is used to obtain the growth rate of
sinusoidal perturbations to an initially straight uniform vortex layer.
The results, unfortunately, are discouraging; while for long w;ves, for
which the governing equation is valid, the growth rate is in good
agreement with Rayleigh's (1896, p.342) exact result, short waves are
still strongly amplified. Hence the numerical difficulty mentioned
above is not resolved by obtaining the equation of motion to a higher

degree of approximation.
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§2 The inner flow to 0(53)

Let C be the plane curve defined in Ch. 3, §2. For a layer of
constant vorticity, C is identified with the centre line of the vortex
layer. Thus in terms of the intrinsic coordinates (s,n) of Chapter 3,

based on C, the non-viscous vorticity distribution can be expressed as

56 -H(s,t) < n < H(s,t)
w(s,n,t) = (4.2.1)
0 otherwise

where n = #H(s,t) are the boundaries C, and C_ of the layer and ;6
is a constant. In order to express (4.2,1) in terms of the inner
variables x,y introduced in Ch. 3, §3, we write H = eHl and Eb = w/e.
In this section, the components u and v of fluid velocity in the
(s,n) frame are determined to 0(53) for the constant vorticity case.

More precisely, in the notation of Ch. 3 §3, terms up to u_ and vy in

3
the expansions (3.3.5) are determined for w given by (4.2.1). The
approximation to u is thgn used to obtain the convection speed Uc
to 0(e?).

The boundary conditions at y = *» are to be replaced by those at
C, and C_. Firstly, since u, the fluid velocity in a coordinate
frame OXY fixed with respect to flow at infinity, is continuous across
C+ and C_, it follows from (3.2.7) that u and v also are to be continuous
across these curves.

Secondly, a kinematic condition is to be satisfied at each

boﬁndary. This can be shown (M §2) to be

_oH _Hy\-1 3K
v(s,H,t) = 3t t (1 p) u(s,H,t) 58 (4.2.2)
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at C+ and
oH H.-1 oH -
-v(s,~H,t) = 5t 1+ BJ u(s,-H,t) s (4.2.3)
at C .

oR
For consistency with the expansions (3.3.4) for 3% and angular

speed Q(s,t) and (3.3.5) for u and v, the unknown time derivative %%

must also be expanded in terms of €. Thus

oH
%% = eszl = E(Hl(x,t) + eHz(x,t) + E2H3(X,t) + ...) (4.2.4)

Then with @ as in (4.2.1), the set of equations (3.3.7), obtained
from the kinematic vorticity equatiom, together with the above boundary

conditions can be used to give LR Thus from the first

2,u3,....

two equations of the set u. and u; can be determined. These are given

0

by (M (2.19), (2.20)); note that in (M) u ;1 (called A in (M)) refer

o’

to values of u,, Uy aty = 0 and therefore differ from ;6, ;i as used

in Ch. 3. For consistency, Moore's definition of these quantities will

be used from henceforth.

If uys Yy and v, (M (2.23), (2.28)) are substituted from (M) into
the third equation of the set (3.3.7) and the equation integrated, then
, .
9 H oH
f w oo 2 2 w 1.2 _ 9 1 =
I+ S-H YR Tyl + 5~y wes (H1 32—)y +u, (x,£) y > ;)
o] 9x
oy’ | 3 -
u2=< 3+85 4, H, >y >-H (4.2.5)
2p
O o2 2 W g 5 W
\ J + ;E[Hly + %Hl yl - 7 ;;i_y —(usz(Hl 5;—)y + uz_(x,t) y < —Hl
where
9— - .2

_ 1 2 - 0,2 _ ,8 (g 1L 0
I =20y + 2 (Qy" + ugy) - % R > My 55 0y * o2
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and :2, 524_ and EZ are independent of y. Since u, is required to be

continuous across the boundaries C_ and C_, we must have

_ _ 32 wH13
u2+=u2+_2-(6)
Ix
(4.2.6)
2 (nH3
T 5, - 25 (-
Y- 2 2 6
%

Gz(x,t) is arbitrary and is to be determined by matching.
From the second of the equations (3.2.6), after substituting

for u_, uy and vy from (M) and integrating, we have

0
w 20y, 2 1p MH; , gp wEZ
+ ;-BT(Y - Hl‘y) *3 = (——p—)y -3 gr( 5 )y + v2+(x,t) Y>H,
w 3 1. 3 -
= - — (= 4
vy * % (p)y + vz(x,t) |-|1>y >—H1 (4.2.7)
2
9H wH wH
w 1, 2 13 1, 2 13 1 -
K > Tm (y" + Hly) 5 m (p )y© - 5 m ( 5 )y + v2_(x,t) y<—Hl
where
u du wH, 3H du
13 Yo, 2 1% 2 1 M1 1
K== Wty ~ow Y o = w Y
and ;2+, ;2 and ;2_ are to be determined. For v, to be continuous
across y = iHl we must have
_ _ 3 wH13
v2+(x,t) = vz(x,t) s (-—66—)
3 (4.2.8)
_ _ 3 le
vy, (x,£) = v,(x,t) = 3= ( & )

;2 will now be determined from the kinematic boundary condition
which has to be satisfied. Expanding the kinematic condition (4.2.2)
at C, and condition (4.2.3) at C_ in terms of € and equating coefficients

of powers of € to zero leads, respectively, to the sets
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9H
_ 1
£ vl(x,iHl,t) = Hl + uo(x,iﬁl,t) 3;—
Hl BHl
* vz(x,iHl,t) = H2 + [ul(x,iHl,t) + uO(x’iHI’t)TT] e
Hl le BHl
+ v3(x,ﬂ{1,t) =Hy + [uz(x,iHl,t) + ul(x,iHl,t)-p—- + uo(x,iﬁl,t)p—z-]a—x-
(4.2.9)
On substituting for uys Yy and v, into the second pair of equations
of the set (4.2.9),it is found that these are satisfied provided
-_— 2 —_— —_—
oH u H u Ju
7. = —1 Oy . L3 ¢ 0 ,2_0
vy M, - (szo + p) Al s (Szo + p) * S ) (4.2.10)
and
¥ IR “‘le
H2 * o= (Hl[u1 " e 1) = 0 (4.2.11)

Equation (4.2.11) can also be obtained by expanding the circulation
density equation and equating coefficient of ez to zero; this serves
as a check on the algebra.

The expressions (4.2.5) and (4.2.7) for u, and v, can be substituted
into the s;ts (3.3.7), (3.2.6) to obtain u; and v,. Then, after applying

the boundary conditions, the final results can be written as

3 2 —
rﬁi + wlyy” = wl,y” + wly + u3+(x,t) y > H
u=4J+ﬂ-i-(l)‘*-9-"ﬁ+E< £) B >y >H (4.2.12)
3 17 2% 2 %97 E R 177 7H" e
9x 2p
J, - wlL 3 _ wl z _ wL,y + u, (x,t) < -H
L1 3Y zy 1Y 3% y 1
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2 - —
Qy y av u,y
= - X, Iy, 2 __2
where J, = 20,y + [ il el =
2.3 3 2
I N A T A S s RO I W06 s S U ulls N |
2
1 6p ax2 x. 6p 3 P ax2 3 axp’ 3x 6 ax2 P p3
2.2 2 2 2
L =l.2[1_+.§ﬂ3_(.];)+5-_3._(.];) ot
3
275,27 & Tax axop bz T3

3 . 4
wH oH wH 2
° - T -1 13 1,__1 3 1
uSi(x,t) u, 6 3% % (p) 4 axz (p) , (4.2.13)
Es being arbitrary. Thus Es+ = Gs_. Vg is given by
(R, + uMyy° - @M y2 + M,y + v, (x,t) > H
1 3Y 27 17 T V¥ ¥R
_ c 5w 9 1y 4 = _ '
vy = 4 K * 125 om (p)y + v3(x,t) H >y >-H; (4.2.14)
K, — uM 3 Myl - My + (x,t) < -H
. 3Y ZY ly 3-\% y 1
where
_ _ 3
R, 2 y v,y ©du
1 ox 2 P ox P ox
H 3 3 H, ¢H H 2 . 2 oH
M =.La_(_L)_l_a_H3 M =.‘§._l‘._._1+_1_.a_(l)_l_a_(H _1.
’ 2°71
1 6p3x p 6 ax3 1 2 2 pZ ox p 9x p 2 85 9x
3
y o5 B, 1R a1 i
3 6p2 ox 6p 2x p 6 ax3
The boundary conditions at y = tHy imply that
2 2.3
O S RO S0 D I N Billr
3+ V3- V3 112071 3x'p p 9% 6 o
2
3H, 9H, 2°H oH
1_1_ 1., Ly (4.2.15)

3 9% 2 9x

ox



and that

g3 u 53 3%

a1 Oy _ 1 0
Hy* 32 G + ) - N

+u2H1) = 0

- - 2 -
u 3H1 u1 H aul

2 g+ L) + 25, —L(a + L
ax p 1

1 5x 2t T wHy X

1 p p 99X 1

2
3+ "3-_ El
2
2 3 2
H
o T B, O
9x 3 37 3 &xp 1 2 3x
x ox

5H

N N

X[
6p
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(4.2.16)

(4.2.17)

Equation (4.2.16) again serves as a check on the algebra since it can

be obtained by expanding the circulation density equation (see expression

for Uc below).

Finally, the convection speed, defined by

H H
U == [ udy = —_— (u,+cu relu, veSu ) d
= y 70 0 %1 2 37 e/ Ay

1
c 2H
1 H1 1 H1

can be calculated to 0(83).

integrating gives
2 2 - 2—

wH H Q u 9 u
. - _ 1 2 — 1,70, 0 _ 0 3 -
U, = uy *+ :-:[u1 78 ] + ¢ [u2 + 3(p + = %——2)] + €7 [u,
P ax
2 .2— 2 2
__H_l_ﬁ_,_wHZ(ii(l) Hl_ 1 3 oy ﬁ - 139
axz 1120 axz p 1op3 2p 3x 1 3x

Substituting for u, (i = 0,1,2,3) and

2
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§3 The outer solution to 0(53)

From (3.4.4), in view of the vorticity distribution (4.2.1), the
complex velocity at z, a point exterior to the layer, is given by

(after a re-arrangement),

L
2 !
je'® n' )-1
z-Z(s',t")

a(t) ds'

. a(
=~ X
alz,t) = 27 g z—Z (s',t)

dn'

i

- wo (1 - p(s',t))(1 -

(4.3.1)
where Z and a' are as in Ch. 3, §4.
The integrand in the inner integral can be expanded in terms of
powers of n (see M (3.5)-(3.9)) and termby-term integration carried

out so that, since odd powers of n integrate to zero, we have

_ 2— 3
. a(t) 2w H(s',t)ds' . a(t) sw H (8',t)I,(s',t)ds’'
q(Z,t) = . 1 "'f' 0 y - _1 370 i 2
27 z~Z (8',t) 2w z-Z(s',t)
0 - 0
2— .5 t 1 ]
. a(t) zw H (s',t)I,(s',t)ds
-2 20 4 +. (4.3.2)
m z~Z(s',t) Tt e
where
.meima .m—le(m-l)ia
I (s,8) = = -2 (4.3.3)

(z-2)® p(z-2)™!

Let z be given by

72(s,t) + ine " (4.3.4)

N
]

As noted in Ch. 3, §4 the integrals on the right hand side of (4.3.2)
remain bounded as z + Z(s,t), a point on the centre-line. Thus,

uniformly in z, the outer solution, in terms of the inmer variables, is

1.2 .,
o(z,t) = - —= a(?) ydx' _ ie? a(t)  3yH, “I,dx
’ - i
o0 ozl oHeyezx,0) T 0 zlx,t)+ieye ®-z(x',b)

+ o(eh (4.3.5)
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where H(s,t) = aHl(s,t) is written and the fact that the circulation

density y(s,t) as defined in Ch. 3 is given by y(s,t) = ZEbH is used.
In (4.3.5) the integral proportional to 53 is zero since the

distribution of vorticity is symmetrical about the centre-line. In

the case of a general distribution of vorticity this would be no longer

so and the integral has to be considered in order to evaluate the third

order approximation.

The inner limit of the outer solution is now sought. Let

. a(t) . .
QS_O)(Z,t) = lim (- 5 (e ’t)d"ia ) (4.3.6)
= y+04 T 0 z(x,t)+ieye'®z(x',t)
1 .2
. a(t) = vyH “1,dx'
o P(z,6) = lim (-5 [ L2 ) (4.3.7)
= ¥40.. 0 Z(x,t)+ieye'®-z(x',t)

Then from (M(4.5),(4.6)),_QiO)(Z,t) is given by

a(t)

(0) .
Q. (z,t) = - = F y(x',t)dx' - -ia
* 21T 0 Z(x,t)—Z(x',t) + %‘Y(x,t)e (4-3-8)

where the slash denotes Cauchy principal value integral.

Now on substituting for L, in the integral in (4.3.7) and noting

YA ia

that == = e, the term in ( ) becomes
) 2
o ey B
: 'yleela az’ iy —— 4z
C (z-z") C (z-z")

where z is as in (4.3.4) and C is the centre-line. For z,Z real and z
on the path of the integration, Mangler (1952) has defined principal
values for integrals of the type appearing in (4.3.9). However, here it

is convenient to proceed in the following manmer.
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Define 2
ia H1
iYHle Ry
£(2) = - —pF——, g(z) = - (4.3.10)
£(Z) and g(2) are analytic and
-ia 3 iYle io 2 3
£v(z) = e — (- ——e"" ) = -—{S'Y By, i LA
X 6w 3x p
24ﬂm
i .
. ivH . 2 3
" = "la 3  -ia 3 . 1 - _ 1e Y 3 . 8 Y
£'(z) = e = (e ax( ___EF—___)) — {__f >+ i ax(p )}
247w 3x
where y = 2wH1 is used. Similarly,
3
1 3 Y
g'(z) = - — (=)
24ﬂm2 9% o
Note that since y(x,t) is assumed to vanish at the ends x = 0, x = a(t)

(ch. 3, §1), £, g, £', f" and g' also vanish there. Also g" vanishes
at the ends while f"' will vanish there provided %% does; this will be

assumed to be so. Then (4.3.9) can be written

—£€2) , _8(2) )z = [ (- __(%f(z) + B(2)y  3E°(2) | £'(2), .,

¢z’ ol ¢ Bl TF (ga? P2
@, £@), g E@), g@,
2(Z-z) ends C (z-z)

The term [ ] is, uniformly in z, equal to zero since £, £"'(Z) and g,

g"(Z) vanish at the ends. Then

[ E£(2) | g'(2)y,. [-4 sE1(2)y %f"(z) + g (z)} az

C (z-z)° %72 ¢ 92 () -2

%f (z) f 5£"(Z) + g '(2) 4
Z- ends VA




Again the term [ ] is, uniformly in z, equal to zero since f',

- vanish at the ends. Thus

dz

lim

z+Z

fromtside
of C

Qiz) f %f"(z) + g (z)

—

.81

f"(z)

(4.3.11)

From the Plemelj formulae (Mushkelishvili (1958), p.42), we have

Py = f %f"(g:zz g (2 47 4 nig f"§Z) + g'(2)} (4.3.12)
+ ¢ '
On substituting for f" and g', (4.3.12) becomes
2 2
) ' 1\2 3 ,y(x")H1 (x'")
. a(t) —=(y(x"H, ")) - i —«( .
Pt = f ad ! ax'”  pGxD oy
0 z(x,t) - z(x',t)
—ia 2 3 YHIZ
+ -——{— (‘YH %y -1 = (4.3.13)
x  p
ax
Then the inner limit of the outer solution is given by
(0) (0)
3Q a2 .2
q(z,t) = Q(0) + ey _3%__ + e (Q(Z) (yezz) aa:; )
(2) . 3,(0)
5 3Q iay3 97Q,
1ol - B — v aeh 3w

according as z *+ Z from * side of C respectively.

In the next section (4.3.14) is matched with the outer limit of

the inner solution.
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54 Matching

*

into (3.5.2), the

Introducing the expansion (3.5.3) for gi

inner velocity, in complex notation, for points z exterior to the

layer is given by

qI(z,t) = [I; + uoe-m + é{HI + (ul-ivl)e_m - ynoe—m}
+ €2ﬁ1; + (uz-ivz)e—la - yﬂle—la} + EB{H; + (us-iv3)e—1a- sze_la}
+ 0(e) (4.4.1)

where ui and v, are evaluated at y > H1 Oor Y 4 -H1 according as z

is on * side of C. Then (4.4.1) constitutes the outer limit of the

inner solution and must coincide with (4.3.14) as € + O with y fixed.
The 0(1) and 0(e) terms can be matched to obtainII;,III. These

are given by (M (4.7), (4.12)).

Matching of the 0(52) terms which are independent of y requires that

* - .= -1 2
H2 + (u2i - 1v2i)e 0 Qi ) (4.4.2)
where Ez+ and ;é+ are given by (4.2.6) and (4.2.8) respectively. On
adding the two equations (4.4.2) and substituting for Qéz) from (4.3.13),
2
2 YH
3 2y . 3 :
. R . at (ax'z(ml) i 3 ))dx
) + (uy = dvyle - T2n g z(x,t) - Z(x',¢t) (6-4.3)
On subtracting the two equations (4.4.2)
- - 82 mH13 3 wH13 '
(u2+-u2_) - 1(v2+-V2_) = 2(;;5( 3 ) -1 326—33—)) (4.4.4)

in agreement with (4.2.6), (4.2.8). Matching of terms proportional to y
and y2 reveal no new information but is accomplished in Appendix A for

consistency.
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Similarly, matching of 0(53) terms independent of y require that

u, +u v, + v .
M + (- 2 Inie J (4.4.5)
and that
U, = ug_
(4.4.6)
V3+ = V3_
Equations (4.4.6) are in agreement with (4.2.13) and (4.2.15).
Hence, in view of expansion (3.5.3),
(a, +u, ) (v, +v, )
A i SRS € i T - .
T [u0+e( 7 i 2 ) + ¢ (u, 1v2)
u,, +u (Vo +v, ) .
+ e3¢ 3+2 3= _ 3+2 3 )™ =1+ 2 + 0™
(4.4.7)
where
I = - _i.a(t) y(x,t)dx'
2% 5 Z(x,t) - Z(x',t)
(4.4.8)
2 3
and 23y g2 yyan
. alt) ( 2('Y ) -1 Bx'( p))dx
N = 1 2{ Bx'( 3
481w~ O z.x,t) aEICN

It is convenient to introduce the convection velocity U, given by
(4.2.18).
Thus, on substituting for the 0(e) term in (4.4.7) from M (4.13),

and using (4.2.6), (4.2.8), (4.2.13) and (4.2.17), (4.4.7) can be written,

* . . . .
g% +U_e ic la | EZ(N + Pe iay e3p i 0(54) (4.4.9)

=1 + ¢P.e 3

1
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where
= - l l 1 -§1
Py 2 3p t 1w
u % u du
Yy .y .1 0 1 (0] pa 0 Yy _ 0O
P,=X X (=@ +2) -2 —0 +i2 P + Y L0
2 4(.02 3 'p (o} p 2 axz X 0 _p p 9x
u
Y3 _o
* 3o (QO + p))]
u. 3% 2 .2 2
Y 2wy 1 wy 1 Y ,Y 9 1 Y 13 Y
p, = Ly B(o, + ) - T Y e Y S i A1 %)
3 8w 3p 1 D 3 axz 4 10 ax»_Z. p 5’:)3 p 9%x°' 3K
3 Uy 3y U gy 29
+ l{wYa (Ql + =) + 4o ax(Ql + p_) + 5 %
_1(21_§1+xa_3'1+3_a_(;)+ﬁg)} (4.4.10)
2 2% 3,3 3pax p 2 ox /7] e
p 9X 9x
In (4.10) Hl = v/2w has been used.
Now
i0 322
Q2 = ie XKoL (4.4.11)
so that
= .10 3 I . ia 3 - -ia
QO ie™ S=H, ie” == (1 use )
or _ _
u . Ju
0 _ . ia 3T 0
QO + 5 ie o o (4.4.12)
and
ic 3 I i 3 -iq ,~— xz iy 3y
Ql = 1e a_x 1 = 1le a_x (-e (ul + Bwp + 20 ax))
or _ -
u 2 2 du
L 13 8y o X i3 3y x" 9 Ly, 1
Q + 5= % % 5w (v ax.) 8wp2 1.(4(”p = 85 5% (p) e ) (4.4.13)
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The expressions forIIo andH1 have been obtained from M((4.7), (4.12)).

On separating the real and imaginary parts in (4.4.12), we have

u .
0 _ . ia 31
8 *t5 = Re(ie ™ (4.4.14)
and _
du .
o _ ia 3T
= Re(e —ax) (4.4.15)

Similarly, on separating the real and imaginary parts in (4.4.13) gives

AN

% 19 3y Y
Qre T o Gl - 42 ) (4.4.16)
o
Ju 2
Mo Ly, o, -
ax w ot Tm ) (4.4.17)

Equations (4.4.15) and (4.4.17) could also have been obtained from the
circulation density equation.

If the expressions given by equations (4.4.14)-(4.4.17) are
substituted into (4.4.9), then on using (3.5.11)-(3.5.14), (3.5.16)
and the nmotation (3.5.15) the circulation coordinate I' can be introduced

and (4.4.9) can be written

ae* TS R ST 3 .1
3t (r,e) = 1+ -+ = 2 (N + PZ) + = 3 + 0(_—.4) (4.4.18)
YW Yo () “o



where
re
I = -L ¢ dr’
2r J e(r,t) - e(r',t)
2% 9 6 e 22g*
r —z*tar U e —2 dry
) e or; 1 1ar,
N - ——L f
48T
0 g(T,t) - z(Fl,t)

~ i a 4 3g*

P, = - 52 2t 3Ly _ (8%)2 3 6 3Tty _ 6 (38" a%e _ 25 2%e%yo1
2 2% aT ar ’ ar'- or af .2 ol .2 ol
ar
_ os” 32g* H1* 1
T .2 o
- 220) | 2 928,22 3%, 3 v? 33 , 0,3 4
By =3 U 30U 35 )5F(U ) 5 UG G )T e o UerUar® )
U 22* 9 69 ,3 .2 9 9z * 2.2 9 9g*.9 ,. 6 3z 9 oe*
*sar ot (U 3FGF U aFUar))) + 3 U7 57U 55)5(U 57 57U )]

It may be noted that although the complexity of the modified equation
has increased with the higher order matching, the evaluation of the
higher order terms is straightforward once £ and I are known; N may be
evaluated by standard methods.

Some checks on the correctness of the higher order terms in (4.4.18)
are available. Firstly, the growth rate of perturbations on a straight
uniform vortex layer is given by Rayleigh (1896, p.392) and the corres-—
ponding value obtained on using the modified equation (4.4.18) must
agree with this in the long wave limit. This is discussed in §5.

Secondly, it can be shown that (4.4.18) is satisfied by the
limiting form of the solution for a uniform circular vortex layer of

thickness h0 in the limit hO/p0 small, where o is the radius of the
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centre line of the layer; the radial velocity at the centre line is
zero while the azimuthal velocity is given by the velocity of convection
of vorticity which can be evaluated directly from the kinematic vorticity
equation.

Finally, (4.4.18) can be compared with the limiting form of
Kirchoff's (1876) solution for a rotating uniform elliptical vortex
in the limit of a small value of the minor axis, large value of the

contained vorticity w and finite total circulation Po. For put

~-a exp(ipt)cos 6, (4.4.19)

L
L]

(ro/n)(e - %sin 26) (4.4.20)

where 0 < 8 < m, a is the semi-minor axis and y is a constant, to be
determined; p is the rate of increase of eccentric angle of a fluid

particle lying on a con-focal ellipse within the vortex. On noting that

a_ 30 3,
T oT 36

QL

it can be shown that

ir e-iut
I = 0 cos O (4.4.21)
Ta
1-'O
(so that with y = — , (4.4.19)-(4.4.20) is an exact solutiom of

2 3
Ta
Birkhoff's equation for a vortex sheet. See Moore (1976)), U = 2T sin6/mwa

and that
iro3e-1ut
cos 6 (4.4,22)

e
]

35
T a

Substituting these into (4.4.18) and equating the coefficient of

e_lut cos O to zero gives
T, or 3ro2 4r 2 .
Ta TaA W T aaw T a w
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Since b = Po/na; is the semi-minor axis of the elliptical vortex,
it can be verified that (4.4.23) is an expansion in b/a of
abw
2
(a + b)
which is the value given by Kirchoff for the rate of increase of

eccentric angle of a fluid particle on a confocal ellipse within the

vortex.
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85 Growth of long waves on a straight uniform vortex layer

A straight uniform vortex layer of thickness h0 with velocities
on the two sides of the layer given by #V/2 is, in the notation of §4&,
represented by g = PV_l. Moore (M) used the modified equation (4.4.18)
without the 0(1/;2) and 0(1/53) terms to consider a sinusoidal disturbance
of spatial wavenumber k to the straight layer. Thus, in the disturbed
state z(T,t) was taken to be
—ikr/V

ikl /v

a(r,t) = IV !+ a(t)e + b(t)e (4.5.1)

where a(t) and b(t) are complex-valued. The growth rate obtained was
found to agree with Rayleigh to O(kho).
Repeating Moore's analysis with the 0(1/52) and 0(1/53) terms

included in (4.4.18), it can be shown that

2. 2 3
* ; kh k“h (kh )
da  _ ivk . 0 * 0 *y _ 0 *
st = 3 Ib 3 (2b + a*) + i3 (2b+a™) e (3b+2a™)1 (4.5.2)
' 2. 2 3
. kh k“h (kh_)
ab* vk 0 * 0 *y 0 *
k. - ol 3 (2a + b™) + B (2a+b™) T (3a+2b™)1 (4.5.3)

(cf. M((5.19)-(5.20))). These equations imply that the amplitudes grow

like eUt where

kho (kho)2 (kho)3 (xh )2
o = yvki(1 - 3 " T T e ya - kho +

3
(kh_)
0 0 %
% - 12 )] (4.5.4)

However, in view of the approximation leading to the governing equation

(4.4.18), it is legitimate to retain only terms up to O(k3hg). Thus

) kzhoz 28k3hg -
o = ¥V [1 - 3 khy + —O - —=0— + 0(k )] (4.5.5)
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which agrees with Rayleigh if terms of O(kahh) are neglected.

Although the theory is valid for kh << 1, it is of interest to
consider o for finite values of kh. 1In Fig. 4.1, 02, as given by
(4.5.4), is plotted against kho (curve (d)). The maximum growth rate
is achieved when kho = 0.78 and the growth ig stopped when kho = 1,23,
The corresponding exact values obtained by Rayleigh are 0.80 and 1.28.

Also included in Fig. 4.1, for the purpose of comparison, are
plots of o2 corresponding to (i) Rayleigh's exact result (curve (a)),
(ii) case when 0(1/53) term in the governing equation (4.4.18) has
been omitted from the analysis (curve (c)) and (iii) case when both
O(l/ﬁa)land 0(1/a%) terms have been omitted (curve (b)). For small
values of kho the agreement with (a) becomes better with higher degree
of approximation. However, for large values of kho the three curves
(b), (e¢), (d), corresponding to the different levels of appréximation,
show that 02 is positive and increases with kho. Thus short waves are
unstable. As pointed out by Moore, this means that spurious short wave
disturbances which will be excited in any numerical attack on the
integro-differential equation (4.4.18) would be amplified. Thus the
hope that inclusion of higher order terms in (4.18) would resolve the
numerical difficulty revealed by Moore's analysis for case (iii) above

has not been realised.
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For consistency in 0(52) matching, terms proportional to y and y2

in the 0(52) terms in (4.3.14) and (4.4.1) must be matched although the

matching reveals no new information.

Note that there are no terms of 0(52) proportional to y in the

outer solution (4.3.14). Thus the corresponding terms in (4.4.1) must

equate to zero. Substituting for u,

terms proportional to y are given by

. u v oH v Ju wH
-1io 1+ 1_ 9. 1y _ .1 _ 1 __1 3 1,
e {291 + > + o= w5y (H1 = ) 1[p - 5 'Bx(p)

0. However, since from (M(2.21))

_ — _ ,lez
u1+ = u, = w4 %

according as y

AV

and v, into (4.4.1), the o)

dH

2wH 1
p X

(A4.1)

(A4,2)

the coefficient of y on either side of the centre line is the same,

as it must be. On writing vy = 2wH, in (4.4.13) gives

1

2 2
H H 3wH H H
E_l) _ wH, _ i wh, 9 1, wH,
x 292 ) ¥ 2

(%) +

N S
Q1 B o) +(°8x (Hl

S1 b

Substituting (A4.2) and (A%4.3) into (A4.1) and noting that ;i

we find that the term in { } in (A4.1) vanishes as required.

8H1

-wH, —

1 %

For terms of 0(52) proportional to y2 to match, it is required that

- 2— 2 =
e-ia{&;wul_'__o_;iauO_,__QaHl_i[_%inﬂ_:a_(_a_u_O;w?_H_l
P p2 p 3x2 2 axz ax 2p 9% Ix
. 9 1 - e2ia 82Q£0)
-k — (S)(=F = - =
5% G ol + w1} aa

according as y 3 O.

(A4 .4)

]-Ql}

Ly (as.3)
X
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(0) (0)

Since Q+ and Q are analytic, its derivatives can be evaluated

in any direction. Thus

2 (o) 2_(0)

(0) (0) (0) '
UL i il T B
oz xe - ¢ x: P 93x )
From M(A8), M(4.4),
3Q(0) | u du oH H
. u W
—% - ;e Q,; 90 _; _1__1
- ie {Qo + i in o 5 } + o(e) (A4.6)
so that
2 {0) - 2
o, = _e‘i“{fg + 39 - fgl + 3—— (wH,~u ) - iba-a— (wH,-u )
axg p p2 p2 8x2 170 p 9x 10
u wH
3 O _ _1,,-
Py (Qo + 5 5 )1 1 + o(e) (A4.7)

On substituting (44.6) and (A4.7) into (A4.5) we find that (A4.4) is
satisfied.
Similarly, it can be shown that terms of 0(83) proportional to

¥, y2 and y3 in (4.3.14) match with the corresponding terms in (4.4.1).
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For God' s Sake

Let us sit upon the ground and tell sad stories

Of vortex filaments.
How some have been ill-posed, some singular,

Some poisoned by their self-induction, some core 'size killed,

some haunted 'by- the mathematics they have involved.

All murderous.

For within the swirling motion that rounds the mortal circulation
Of a vortex

Keeps futility his court,

And there the non-linearity sits

Scoffing at his state and grinning at his theories

Allowing him a breath, a little scene to linearize, compute

and fill with approximations

And then at last he comes and with a little inconsistency bores through

the costly hopes and

Farewell ......

Shakespeare

Richard II. Act 3 Scene 2

( as told by Saffman and Yeun)
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CHAPTER 5: THE EQUATION OF MOTION OF A
THIN VORTEX FILAMENT

§1 Introduction

In this and subsequent chapters consideration will be given to
the motion of thin vortex filaments. A vortex filament is considered
to be a tube of small cross—-section whose surface is composed of
vortex lines and which is surrounded by irrotational fluid. The cross—
section of the core will be assumed to be circular to leading order,
the radius of the core ¢ being small compared to the local radius of
curvature, p. Thus it is required that c¢/p << 1. Deformation of the
circular cross-section as the flow evolves will be ignored throughout.
This is justified because the self-induced strain—-field to which the
vortex is subjected is weak (see Moore & Saffman (1971)). The motion
of the filament is then determined by tracking the axis of the filament.

In flows in which a thin vortex filament is present, the velocity
field at points distant from the filament does not depend on the core
structure, and the induced flow at these points can be calculated
using the Biot-Savart line integral (5.1.1). However, in order to do
this, the instantaneous position of the vortex filament must be known.

The equation for the motion of a thin vortex filament of arbitrary
shape and internal structure has been obtained intuitively by Crow
(1970) and rigorously justified by Moore & Saffman (1972). Since this
equation is basic to the considerations of subsequent chapters, it is
briefly discussed below.

The fluid is regarded as inviscid, iﬁcompressible and of uniform
density. The equation of motion of the filament derived by Crow is a
statement of Helmholtz's law that in a non-viscous fluid vortex lines

move with the fluid. Thus the motion of the filament is determined
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once the velocity at the vortex is established.

In the absence of axial flow in the vortex filament, which is the
case in the considerations of subsequent chapters, Moore & Saffman
show that the error in Crow's equation is O(czlpz).

Let x be the position vector in a fixed coordinate system and
let a vortex filament of strength T be specified by its centre-line
which has the parametric equation x = X(£,t). Here £ is a Lagrangian
parameter such that £ = constant represents always the same fluid
particle and t is the time variable. Let i(E,t) denote the unit
tangent vector and s = s(E,t) the distance along the filament. The
velocity at X is that induced by the vorticity iﬁ the filament itself
and by any external means such as another vortex present in the flow
field.

Now, at a point x exterior to the vortex filament, the velocity
u(x) induced by the vortex is given by the Biot-Savart law as

&(,t) A (x - X (g,t))ds

= L
u(x) = el f 3 (5.1.1)
filament [x - X(g,t)|

The integral (5.1.1) cannot be used to obtain the velocity at
x = Eﬁgo,t), a point on the filament itself because in deriving (5.1.1)
it is assumed that x - y, where y denotes the position of a point in the
vortex core, does not vary across the vortex cross-section and this is
no longer true in the vicinity of §ﬁg0,t) as E_»-&(Eo,t). Further,
the integrandhas a singularity at x = §ﬁg0,t) so that E(E(go)) may be
infinite. The difficulty is overcome by a suitable cut-off in the
integral so as to make the integral finite and to allow for the internal
structure of the filament in the vicinity of_EﬂEO,t).

Two forms of the cut-off are described in §2 and in §3, the

equation of motion of the filament is written down.
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§2 The cut—off method

Crow (1970) defined the velocity given by (5.1.1) in the limit

I g t(E) A (z(ao) - X(£))ds (&)

4 [d]

u(X(gy)) = (5.2.1)

3
|%¢e ) - X(8)]
_O -
where the explicit time dependence has been suppressed for convenience
and where [d] means that an interval (s(EO)—d, s(EO) + d) is removed
from the range of the integration. - The integra}l is then finite and

the velocity is given in terms of d. The length d is chosen so that
d = & c(g,,t) (5.2.2)

where c(EO,t) is’ the core radius at & and §  is a constant. §_ is
determined by evaluating the cut-off integral for the particular case
of a circular vortex ring and comparing the velocity with the known
exact result given by Saffman (1970). The crucial assumption is that
the value of d depends only on the local structure of the vortex, and
not on the geometric configuration of the filament so that the same
value of d for a circular ring can be used for a filament of arbitrary
shape so long as their local structures (i.e., the core size and the
swirl and axial velocity distribution) are the same.

Thus, using Saffman's results,

2 c
log 28 = % - AT ] rvidr (5.2.3)
e rZ o

where v is the swirl velocity in the core and there is no axial flow
in the filament.

Crow's cut-off method is inconvenient to use for numerical work
because it would be difficult to remove an interval from the range of

the line integral if the interval is not terminated by grid points of a
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finite difference scheme. An alternate form of cut-off, which is more
suitable for numerical work, is suggested by Moore (1972);. the cut-off
was firs; used by Rosenhead (1930). The integration is carried out
over the entire range but the denominator of the integrand in (5.1.1)
u2l3/2

is replaced by I(E(EO) - K(E))2 + where the quantity u is given by

n o= ZGRC(EO,t) (5.2.4)

where GR is a constant. As with Crow's cut-off length, GR can be chosen
by evaluating the new integral for the case of a circular vortex ring

and comparing it with the known results. This gives

§. = 6el (5.2.5)

where Sc is as in (5.2.3). For a uniform vortex with no axial flow,
i.e. with v = Ir

2Tc

§ = %e% (5.2.6)

and
§, = %e_% (5.2.7)
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§3 Equation of motion

Since the fluid is non-viscous, it follows from Helmholtz's law
that the vortex lines move with the fluid. Thus, assuming the cross-
section of the vortex filament remains circular, the equation of motion
of the centre-line can be written,

— - 2;;55 |_}g—)_<'[3 +2E(§(go),t) (5.3.1)

where § implies that one of the cut-off methods described in §2 is used
to make the integral finite and YE(E(EO),t) is the contribution to the
Yelocity at 2@50) from external sources which produce an irrotational
field at X(E,).

The right hand side of (5.3.1) is given in terms of d or g
depending on the method of cut-off used. Thus, in view of (5.2.2) or
(5.2.4), the radius of the core c(Eo,t) has to be determined before
34/3t can be evaluated.

In order to consider the response of a vortex filament to a
disturbance whose amplitude is small, the core radius may be taken to
be constant and given by its initial value; the error is of the second
order in amplitude. However, for finite amplitude disturbances, the
variation of the core size cannot be neglected.

It can be shown that the disturbances which cause the area of the
cross—-gection to change propagate along the filament with a much faster
speed than the disturbances which cause the curvature of the filament
to change. Moore & Saffman argue that the variation in cross—-sectional
area -along the filament are smoothed out in a time which is short
compared to the time it takes for the position of the filament to shift

by a significant amount. Thus, on the time scale of the filament motion,
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the core can be regarded as being uniform along the filament, so that
e = c(t) (5.3.2)

2 .
Moore & Saffman show that the error is O(E—égl), where p(go,t) is the
p
radius of curvature. The dependence on t follows from the conservation

of volume (in the absence of diffusion)f. Hence
2 .
Le = constant (5.3.3)

where L(t) is the total length of the filament; L(t) is given by

L(t) = [ ds (5.3.4)

filament

Likewise the swirl velocity v = v(r,t), where r is the radial distance
from the centre-line of the filament is independent of position along

the filament so that, in view of conservation of circulationm,

v = i%f(%) £(1) = 1 - (5.3.5)

where f is determined from the initial structure of the vortex. Thus

in (5.2.3),

2 ¢ A 1
%— [ iz = [ nE(n)dn (5.3.6)
T 0] 0] ’

so that this is constant throughout the motion as required.
Hence, once the initial structure and configuration of the vortex
is known, its motion can be followed using (5.3.1), evaluating the cut-

off length at each time step.

fLeonard (1974) has considered models where the cut-off length is chosen
so that the volume of local filament segment is conserved and also
where the influence of viscous diffusion of vorticity is incorporated
in the cut-off length.
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In Chapter 6, (5.3.1) is used to study the evolution of an
elliptic vortex ring while in Chapter 7 it is used to study the
evolution of an infinitely long straight vortex in the presence of

an approaching rigid sphere.
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CHAPTER 6: THE EVOLUTION OF AN ELLIPTIC
VORTEX RING

§1 Introduction

There is at present considerable interest in idéntifying the
mechanism responsible for destroying the trailing vortex system of
an aircraft. The trailing vortices, made visible by the condensation
of moisture in their cores, are observed to undergo a slow instability:
wavy disturbances grow on both trailing vortices and reach an amplitude
such that the vortices touch at the nearer points and break up into a
sequence of distinct vortex rings. The form of the rings is such
that its projection onto the plane of maximum projected area is
roughly elliptic in shape. Once the rings have formed, the vortex
trail soon ceases to be visible.

The growth of waves on trailing vortices was studied analytically
by Crow (1970) who showed that small perturbations of the vortices in
the form of plane waves of sufficiently long wavelength are unstable.
Later Moore (1972) followed the growth of symmetrical waves on
trailing vortices numerically and showed that waves grow to such an
amplitude that they touch at the nearer points. Thus an explanation
of the observed looping process is to hand.

The mechanism by which the vortices break up to form vortex rings
is not understood. Nor is it clear that the rapid loss of visibility
of the rings implies their disintegration; care must be taken in
interpreting observations which depend on the retention of smoke particles
or water droplets in the vortex cores. It is possible that the non-
circular form of the vortex rings which are formed is significant to
the observations. Thus it is of interest to know what happens to an

initially non-circular vortex ring.
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In this chapter an initial value problem is studied. Given a
plane elliptic vortex ring, it is proposed to follow its subsequent
motion and deformatiom numerically. It will be shown below that a
non-circular ring must necessarily deform.

The choice of a vortexlring of elliptic shape is also relevant to
the study of a wake of a bird in forward flight. Photographs from
Kokshaysky's (1979) experiments clearly show deforming vortex rings in
the wake. The motion of the wings is such that in one complete beat
the bird leaves behind it a vortex ring of roughly elliptic shape
in a plane inclined at an angle to the direction of flight. Rayner
(1979) has modelled such a wake by a chain of elliptic vortex rings
to estimate power consumption and mean lift coefficients. He ignores
the.deformation of the rings in his calculations.

Previous numerical study of the motion of an elliptic vortex ring
is due to Arms and Hama (1965), who used local induction aéproximation
in their calculation of the motion. This assumes that the motion of
a thin vortex filament is govermed by the approximate equatioms

3X(s,t) b(s,t) r
at* p(s,t) ’ b

1n(%)"t (6.1.1)

where b and p are respectively the local binormal and radius of curvature
at X, a point on the filament, and s is the arc distance along the
filament. ¢ is taken to be an unspecified constant although a proper
treatmeﬂt of the Biot-Savart integral shows that ¢ = ¢/p, where c is

the core radius. Thus the approximation neglects the dependence of

€ on p and on any variations of the core size during the motion as well

as the contribution to velocity from distant parts of the vortex. The
neglect of this contribution means that the approximation loses Crow
instability. Thus the approximation is not satisfactory if this important
feature of the evolution of a vortex filament is not to be excluded from

consideration.
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The cut-off theory described in Chapter 5 provides a more accurate
method of approach and is used in this chapter to follow the motion of
the vortex ring.

It may be noted from (6.1.1) that the velocity at a point on the
vortex is approximately inversely proportional to the local curvature.
Since the curvature varies along the length of an elliptic vortex
ring, the velocity will vary accordingly so that the ring will deform
from its elliptic shape as it moves.

In §2, small perturbations of elliptic mode to a circular vortex
ring are discussed while in §3 the numerical procedure used to integrate
the equation of motion (5.3.1) for an elliptic vortex ring is described.
In §4 numerical results are presented for rings of different eccentricity
and core size. The initial size of the core used for each ellipse is
that predicted by considering the impulsive motion, in a perfect fluid,
of a flat elliptic disk which is then dissolved away. This method of
fixing the core size is due to G.I. Taylor (i953) and is described in
Appendix A. In §5 a quantitative experiment is described for observing
the motion of an initially elliptic vortex ring and the results are
compared with those of the numerical calculations in §6. Estimates of
the vortex parameters are obtained in Appendix B using a simple model
(saffman (1978)) of the flow.

In §7 the relevance of the results to the vortex trail of an

aircraft is discussed.
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§2 Linear theory

The stability of a thin circular vortex ring to small sinusoidal
perturbations was considered by Widnall and Sullivan (1973). 1In a
coordinate system moving with the velocity of an unperturbed circular

vortex ring V, the perturbed ring was taken to be

_ im6 im6
X = (R+re ) e +tze e (6.2.1)

where e and e, are unit vectors in the radial and axial directions,
® is the azimuthal angle, R is the radius of the unperturbed ring and
|z|, |z| << R. The wavenumber m is an integer.

On substituting (6.2.1) into the equation of motion ((5.3.1) with

V. set to 0) and linearizing in z and r, it was shown that for moderate

AL
values of m (for which it is valid to use (5.3.1)), for each m the

ring oscillates with angular frequency tam fgiven in their paper).
In the case m = 2, the two solutions corresponding to ta, can be
superposed to satisfy the condition that initially the perturbed

vortex ring has a plane elliptic form. This gives

r(t) = r, cos(azt), z(t) = zy sin (azt) (6.2.2)

where L and zO are real constants.

Using the value of a, as given by Widnall and Sullivan, it follows
that the period of oscillation 2ﬂ/a2, which depends on R and the
internal structure of the vortex (i.e. core radius and vorticity

distribution), is given by

L4

T(R,c,A) = §355— [{4(1n § -~ A) + .22}{3(1n % - A) + 2.23}]'% (6.2.3)

where ¢ is the core radius and

rvidr (6.2.4)

4ﬂ2
A = ==
r

O -0
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Here v is the swirl velocity in the core and there is no axial flow
in the filament. Note that in linearized stability theory the length
of the vortex filament remains constant so that c must also be a
constant.

The self-induced mean velocity of the ring is that of the
unperturbed circular ring,

el

Y(R,c,8) = X (aB+a-y (6.2.5)
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§3 Numerical solution of the equation of motion

In this section the procedure for numerical integration of (5.3.1)
for the case of an elliptic vortex ring with no external velocity field
is described. Following Moore (1972), the method of cut—-off for the
Biot—-Savart integral is chosen to be that due to Rosenhead; this was

described in the latter part of Ch. 5, §2.

Thus in (5.3.1), with !E = 0, the denominator in the integral is
: 2 2.3/2 . .
replaced by {lgﬁEo) - X(&)|“° + u°Y’“, where u is given by (5.2.4),
and the integration is carried out over the entire range of the integral.
The Lagrangian parameter & is chosen so that in a fixed Cartesian

coordinate system Oxyz, the vortex ring is initially given by
x(£,0) = (a cos(g), b sin(£), 0) -7 < <7 (6.3.1)

where a and b are respectively the semi-major and semi-minor axes of the
ellipse. At subsequent times £ = constant always represents the same

fluid particle.

For time t > 0, it is assumed that the vortex ring retains its

symmetry about x = 0 and y = 0 so that with X = (x,y,z),

x(-m+g,t) = x(m-g,t) =-x(&,t) = -x(-£,t)
y(=m+g,t) = -y(m=£,t) = -y(g,t) = y(-&,t) 0<g<m/2 (6.3.2)
z(-m+g,t) = z(m-£,t) = z(&,t) = z(-E,t)

Hence it is only necessary to follow, say, the portion 0 < £ < 7/2 of
the ring to obtain the shape of the whole ring.

The evolution of the vortex ring can now be determined by simply
integrating (5.3.1) forward in time and calculating the length of the
filament at each time step to obtain the value of u(t). However, the

integrand in the cut-off integral, although it is finite everywhere,
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is large in the neighbourhood of Eo. For near EO (suppressing the

explicit time-dependence for convenience),

2

3% x(s ) - x(&) ax °X
A 3/2 (ag)o (—-5)0 P(E) (6.3.3)

£ {xgy) - (&) |2 5E

where O implies that the quantities are evaluated at £o and

B(e-g, %

P(E) =
(E-gy) (3?)0 W2y

This would cause a loss of accuracy in evaluating the integral. To

overcome this difficulty, the equation of motion is written as

2
| 2X a2x
o T oE L EED X9 - (59 A () P(E, ) de
37t =75 [ Ge A 2. 2,372 80 3¢
7 {]x(&,, £)-%(E, £) [ “+u"}
S azx "
* (33)0 A C 52 o f P(E,t)dE (6.3.4)

The integrand in the first integral is 0(1l) everywhere while the second
integral can be evaluated analytically.
From (5.2.4) and (5.3.3),

X
. -1/2
2% a_;l dz} (6.3.5)

1 kis
u(e) = 26.c¢.{ if'f
0O -7

where L, and c, are the respective initial values of the length and core

radius of the vortex ring. For an ellipse,

Ly = 4aE(e) (6.3.6)

where e is eccentricity of the ellipse, e? = (az-bz)/az, and E(e) is

the complete elliptic integral of the second kind.
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In (6.3.5), using (5.2.5) and (6.2.4), S is given by
log 26, = - %=~ A (6.3.7)

Once the values of A and c. are given, equations (6.3.4), (6.3.5)

0
and (6.3.1) completely specify the initial value problem and the
evolution of the vortex ring can be determined numerically. The
interval (-m,7) was divided into 4(N-1) portioms by 4N-3 equally spaced
grid points. The spatial derivatives were calculated using four-point
centred differences and Simpson's Rule was used to carry out spatial
integration. Because of its stability, the fourth-order Runge-Kutta
formula was used to carry out the integration forward in time.

The calculations were carried out for four different axes

ratios of the initial elliptic ring and the results are described in

the next section.
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§4 Numerical results

The equation of motion is made dimensionless by choosing the
semi-major axis a as the unit of length and 4wa2/r as the unit of time.

Thus the dimensionless time ty is given by

t, = r t (6.4.1)

Before calculations can be performed, the value of A in (6.3.7)
and the initial value of the core radius ¢, are needed. These depend
on‘the process of generation of the vortex ring. One method of
generation in an ideal fluid is to give an impulse to a flat disk of
elliptic shape and then to dissolve it away. By equating the energy
and impulse of the disk to that of the resulting vortex ring, in the
manner of G.I. Taylor (1953), the core size and the circulation of the
vortex riné can be evaluated. The details are pursued in Appendix A.
The initial distribution of potential at the edge of the disc (46.2)
suggests that in the core of the resulting vortex ring the appropriate

distribution of velocity to take is

r w = 0 (6.4.2)

v = —
21r(cr)1/2

where v and w are respectively the azimuthal and axial velocities
relative to the centre of the core and r is the radial distance from it.

This implies that in (5.3.5) f = (5)% so that

A =1 (6.4.3)

The initial core radius is given by (A6.11). For the cases

considered here the values are tabulated below (Table 6.1); the case

g =1 is also included.
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The radius of curvature p of an ellipse varies from a value bz/a
‘at the major axis to a value az/b at the minor axis. The maximum

and minimum values of co/p are also shown in Table 6.1. These values

b/a c0/a co/pmbx = coa/b2 co/pmin = cob/a2
0.2 0.109 2.73 0.022
0.4 0.207 1.29 0.083
0.6 0.287 0.797 0.172
0.8 0.347 | 0.542 0.278-
1.0 0.393 0.393 _ 0.393

Table 6.1. Predicted core-size of vortex ring produced by

the process described in Appendix A.

are not small as required by the cut—off theory. However, in the absence
of axial flow, the error in the cut-off approximation is of the same
order in co/p as in Saffman's (1970) formula for the velocity of a
circular vortex ring. By comparing with numerical calculations of

the full equations of motion, Fraenkel (1970) and Norbury (1973) have
shown that Saffman's formula is fairly good for values of co/p which

are not small coﬁpared with unity. Thus, although no rigorous proof is
available, it is reasonable to expect that the cut-off theory will hold
equally good for such values of co/p. Preliminary experiments with

smoke rings tend to support this view.

In any case the results are not sensitive to the precise value of
co/p since the velocity obtained from the cut-off theory depends only
logarithmically on the cut-off length and hence the radius of the core.
Thus as far as the motion of the centre-line of the vortex ring is
concerned, the results obtained here are applicable, within a small

error, to a vortex ring of the same configuration but smaller core size.
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Only those inferences which depend directly on the core size will
differ.

| Table 6.2 shows ghe values of N and time step At1 used in each of
the cases considered. Trial and error showed that these gave adequate
accuracy. Smaller time steps were needed with increasing eccentricity
of the initial ellipse because of the rapid changes associated with the

large curvature at the major axis.

b/a N At1

0.2 41 0.0001
0.4 41 0.001
0.6 41 0.001
0.8 21 0.002

Table 6.2. Number of points per gquadrant
and time step used.

In view of the results of §2, it is anticipated that in the case
of small eccentricity thé vortex ring will oscillate with a period
given by (6.2.3). As a check on the computer program, this was verified.
In order to measure the oscillations, an amplitude B is defined and
monitored together with the variance of the points on the ring from a
plane parallel to the plane of the original ellipse and moving with the
velocity of the centroid of the ring. If the vortex ring has an
impulse I, its centroid is given by (Saffmén (1970))

(§A£._I_)

- T
x(t) = ¢
= 2 I2

X ds (6.4.4)
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so that for a ring which is symmetric about x = 0 and y = 0 in

Cartesian coordinates fixed in the plane of the original ellipse,

-\ 1 dy _ _ dx
x(t) = (0, O, mgﬂ (x32-y3)z ds) (6.4.5)

since I = Trmab is conserved (this was checked by evaluating I at various

times during the calculations). Then amplitude B is defined as

A - B
1 1
B = L 1 (6.4.6)
Al + B1
where
A (t) = max|x(g,t) - ()] ,

B, (t) min|X(E,t) - x(t)]

The variance I is defined as

_ 1 dy _ _ dxy, —2
~  2mab & (x E% y a;)(z z)“ds (6.4.7)

where z(t) = g . k.

The values of X(tl) and B(tl) have been plotted against time in
Fig. 6.1(a,b). 1Initially, when the vortex ring is flat and elliptic
in shape, I is zero and B = EE% . Subsequently, I and B oscillate in
time. For tl > 0, & first achieves a minimum ét a time defined as
t, = % fA. Except in the case of b/a = 0.8 the value of the minimum
is different from zero; the difference is small but not negligible.
Thus at t, = %TA, the vortex ring is flat in the case b/a = 0.8 and
nearly so in the other cases considered. The numerical calculations
were stopped just after t, = %TA.

For the b/a = 0.8 case the shape of the centre-line of the vortex

ring at various instants of the evolution is shown in Fig. 6.2. At

t, = % T,»> as expected from the value of X(%ﬂk), the vortex ring is flat.
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It is also elliptic in shape with the orientation of its axes reversed.
Thus in this case the vortex ring oscillates periodically since it can
be rotated through an angle of 90° to obtain the initial configuration.
The time %TA is in good agreement with the half-period of oscillation
of an equivalent perturbed circular vortex ring of radius R = 0.9a,
given by %(I/4ma’t(0.9a, 0.347, 1)), where T is as in (6.2.3).

In the other more eccentric cases considered, the vortéx ring
aséumes complicated forms during the evolution.

For the b/a = 0.6 and 0.4 cases, the different stages of the
evolution are shown in Fig. 6.3 and Fig. 6.4 respectively. At t1 = %TA,
as expected from E(%TA), the vortex ring is not exactly flat. Nor is
the shape of the vortex ring elliptic, although the orientation of the
axes 1s reversed as in b/a = 0.8 case. After t1 = %TA, the vértex
ring startsdeforming in such a way that the axes tend to attain their
initial orientation. Thus, although the vortex ring oscillates, the
oscillations are not periodic in these cases. Thus a flat elliptic
vortex ring is not, in gemeral, a periodic solution of the vortex ring
configurations. Ty will be referred to as the "apparent period" of
oscillation of the elliptic vortex ring.

The different stages of evolution of the vortex ring in the case
b/a = 0.2 are shown in Fig. 6.5. 1In this case, at t, = 0.1355 (<%TA),
the points on y = O are 0.214a distance apart, which implies that the
cores are tﬁuching. Since the calculations are based on the assumption
that the separation of such points on the vortex ring is large compared
with the core radius, the results at this stage may be viewed with
scepticism. However, by performing a numerical calculation with
vortices in two-dimensions, in which the core was allowed for, Moore
(1972) was able to show that the Biot-Savart formula gives roughly the

correct velocity even when the cores are touching. Thus, as Moore points
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out, it is expected that, while the cores will be distorted so that

the cut-off length will change, the approximations on which the present
calculations are based will be reasonably adequate even when the cores
are close to each other.

The relevance of the calculations to the real situation at the
instant of touching is difficult to assess. However, experiments, due
to Fohl & Turner (1975), with colliding vortex rings suggest that since
the vortex cores, where they touch, have vorticity of opposite sign,
viscous diffusion would annihilate the vorticity locally. Although the
actual process is complicated, the net result would be that the vortex
lines would connect on either side of the region of contact to form
two smaller rings.

It is not meaningful to continue with the numerical integration
beyond the approximate instant of touching. However, in order to obtain
an estimate of the nearest distance of approach of the core centres, it
was decided to carry the integration forward in time as far as possible
using the same number of points and time step. Numerical instability
sets in near y = 0 at £ = 0.15 when the two centre-line points on
y = O are 0.0l4a distance apart. The instability is presumably due to
this separation distance being small compared with the grid spacings and
could be remedied by using smaller grid spacings and smaller time .step.
However, this was not attempted in view of the dubious implication of
the results at this stage. The shape of the centre-line of the ring at
t, = 0.149 is shown in Fig. 6.6.

At t. = %TA (= 0.147), the separation of the two centre-line points

1
ony =0 is 0.05a. The overall length is greater by 2% over its initial
value so that the core size is not significantly different from its

initial value. Thus, within logarithmically small error, it appears

that an elliptic vortex ring of axes ratio 0.2 and core radius ¢ such
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¢y > 0.025a would break up into two smaller rings before the apparent

half-period stage 1is reached.
aTA
The values of 1, = —;—-for the cases considered are shown in

N
Table 6.3. The reason for tabulating ™N instead of T is that N is
independent of the impulse of the vortex ring. Ty is in good agreement

with

I P
?L = Irab T( 7 €o 1) , (6.4.8)

where t is given by (6.2.3) and < is tabulated in Table 6.2. For
comparison, the values of T, are also shown in Table 6.3.
It may be of interest to note that the velocity U of the centroid

of the ring, defined by

;. &
U = & (6.4.9)

where z is given by (6.4.7), oscillates in time about a mean value ]
with an apparent period approximately equal to %TA. A plot of U
against time is shown in Fig. 6.1(c). U is in good agreement with the

velocity of an equivalent circular vortex ring,

- T -1 a+b
v (4"8) v( 575 Co 1) (6.4.10)

where V is given by (6.2.5). For comparison, the values of T and VL

for the cases considered are shown in Table 6.3.

= a'rA =
b/a ™y = 5= Ty U VL
0.8 1.213 1.212 3.935 3.925
0.6 1.220 1.217 4.522 4.506
0.4 1.290 1.244 | 5.564 5.425
0.2 1.47 1.432 7.383 7.142

Table 6.3 Apparent neriod of Qacillation T.._and mean velocity ]
compared wifH“TL and VL respectively.
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§5 Experimental measurements

The elliptic vortex rings were produced by puffing air through
sharp-edged elliptic orifices of the same eccentricities as those used
in the numerical calculations. Each orifice, of semi-major axis g9
was cut in a thin plate of 14 cm diameter which was mounted on one end
of a 70 cm long perspex tube of the same diameter. The other end of the
tube was smoothly connected to a 8.3 cm diameter brass cylinder which
contained the piston (Fig. 6.7). The piston was driven, through a gear

- a
box, by a high torque stepping motor which was operated bx(iogic
control. circuit, With this arrangement it was possible to provide
high initial and terminal accelerations with a uniform velocity over
most of the piston stroke. The ;cceleration and deceleration times,
the top piston speed and the length of the stroke could be easily
adjusted. In order to provide draught-free conditions, the vortex rings
were produced in a 40x40x70 cm perspex box. The arrangement made it
possible to obtain reproducible vortex rings.

The experiment consisted of hot-wire anemometer measurements to
determine the circulation and core size and flow visualization studies
to determine the mean translational velocity Eé, the equivalent ring
radius R, and the oscillatory features of the vortex rings.

Glycerine smoke was used to provide flow visualization. The
motion of the vortex rings was recorded on a 16 mm ciné film at 32 f/s
and 64 f/s. The film was analysed to determine the characteristics of
the motion of the ring. Starting from the moment of generatiom, the
maximum y-displacement (see Fig. 6.7), Yy of the vortex ring was
recorded and Fourier-analysed. Yo for the cases 0.% and 0.8 are shown
in Fig. 6.8; the figure also shows the average values of Y, OvVer five
different runs. The ends of an oscillation cycle were defined to be

the times when Y, was a minimum and the time interval between the ends
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of an oscillation was defined as the oscillation time ;E’ to be
compared with the corresponding apparent period Ty of §4.

A survey of the velocity field in a plane parallel to the plane
of the orifice and at a fixed distance from it was made by recording
hot-wire anemometer signals at various positions in the plame. At
each position, several different recordings were made; for each recording,
a vortex ring was produced, checking that the piston velocity had the
same value each time. For a circular vortex ring, a few hot-wire traces
are needed (Sallet and Widmayer (1974)) to obtain a qualitative descrip-
tion of the flow field. However, in the present case the vortex ring
is deforming as it moves and traces at several positions are needed.
The order of the difficulty of the aﬁalysis increases when more eccentric
cases are considered. The measurements were repeated at a further
distance from the orifice. .

From the available traces, the ones corresponding to the axls of
the ring and the centre of the core were identified. For the b/a = 0.8
and b/a = 0.4 cases, these are shown in Fig. 6.9. The core-position
trace was used to determine the core size of the ring. From the axis-
position trace, the velocity component u along the z-axis can be
determined (by symmetry the other components are zero). This enables
(see e.g. Didden 1977) the circulation I' to be determined: within a
closed curve C containing the vortex core, I is found by integrating the

velocity along the z~axis and closing the curve C outside the z-axis

at infinity where u and v (y-velocity component, say) are zero. Thus

r = § (udz + vdy) = [ u(z,y=0)dz = { uﬁé(t)dt (5.5.1)
C 0 0

where the transformation dz = ﬁ%dt has been used. From the ciné film,

ﬁﬁ is determined by analysing the end view of the evolution as the

average of the z-velocity of the projection on the y-z plane of those
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points on the vortex ring which lie in its planes (fixed) of symmetry.
The velocity at each of these points on the vortex ring is obtained by
noting its instantaneous z-displacement and numerically differentiating
it with respect to time. The oscillatory behaviour of ﬁé, anticipated
by the numerical calculations, was noticeable only in the more eccentric
cases and appeared in the form of fluctuations approximately about T
(defined in §4).

To obtain estimates of the vortex parameters, it is not satisfactory
to model the flow by a uniform flow past an equivalent disk and use the
method described in Appendix A; see e.g. Sallet (1975). Instead, the
estimates are obtained using a model of the flow, given by Saffman (1978),
in which it is assumed that when the flow is first set into motion,
the vortex sheet at the orifice behaves locally like a two-dimensional
vortex sheet formed at the edge of a semi-infinite plate. Then applying
the similarity law for the roll up of the vortex sheet and using the
estimates given by Pullin (1978) for the constants associated with the
law, it is possible to obtain estimates of the circulation T, the length
of the axes, and the core size of the ensuing elliptic vortex ring.

The details are given in Appendix B and the estimates for the circulation
T, the semi-major axis a, the equivalent radius R and the core size g
for the cases considered are given in Table 6.4. Here L and W refer to
the displacement and velocity respectively of an equivalent slug of

fluid in the perspex cylinder (see Fig. 6.7). The flux of fluid through
a cross—section of the slug is equated to the flux through the orifice.
The fluid velocity in the perspex cylinder was checked and found to be
approximately uniform over the time of the stroke. For comparison,

the corresponding measured values are given in Table 6.5 where

Re(= T'/v) is the vortex Reynolds number and V= ZH;UR .
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§6 ~ Comparison of numerical and experimental results

Plate 6.1 shows the contrast between a vortex ring produced from
a circular orifice and that. produced from an elliptic orifice of axes
ratio 0.4.

For axes ratios b/a = 0.8, 0.6 and 0.4, the vortex ring was observed
to oscillate in the manner anticipated by the numerical calculationms.
In fact, qualitative comparisons between some of the stills of the
vortex ring from the ciné film and the computed configurations in
Figs 6.2-6.4 showed striking resemblance. Plate 6.2 shows the plan view
of the evolution of the vortex ring for the case b/a = 0.4. As may be
noticed from the plate, at the end of the first half cycle the vortex
ring assumes the shape shown in Fig. 6.4 for time T,. This shape was
observed at each subsequent end of cycle for three cycles indicating
that this configuration may be a possible periodic solution of the vortex
ring. The contortions seen in the photographs in the set of frames on
the far right in Plate 6.2 are a defect of the photography and do not
indicate a short-wave instability of the ring; the vortex ring has
progressed beyond the depth of focus of the camera. However, a short-
wave instability of the type described by Widnall and Tsai (1977) for a
circular vortex ring was eventually observed for the b/a = 0.4 case;
Plate 6.3 shows eight waves growing on the elliptic vortex ring. The
pictures were taken at approximately ls after generation time. From
éaffman's (1978) formula (2.18), with € = 0.62 and R = 2,95 (see Table
6.5) and using his equation (3.6), the expected number of waves N on
an equivalent circular vortex ring is N = 8 approximately. The
agreement is remarkably good considering that the observed vortex ring
is not circular.

It was found that in each case considered, the oscillation time ;E

had a greater value for each subsequent cycle. This increase in ;E with
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time is believed to be related to the accompanying increase in the
equivalent radius of the ring observed at the end of each oscillation

cycle. For the purpose of comparison with numerical computations

. = —= (6.6.1)

is defined. The values of ¥t for the first half cycle is compared
with the corresponding numerical values of %TN in Fig. 6.10. It is found

(a+b

. , a+b
desirable to plot TE/TL 73 Cgs 1) and TN/TL(

5 e 1) instead of g
and ™ in view of the differences in core size between that used in
the computations and the corresponding observed value. The results are
in fair agreement in the cases b/a = 0.8 and 0.6. For the case b/a = 0.4,
the value of TE/TL is much greater than TN/TL. However, the error margin
in the value of TE/TL is large. This is due to the difficulty in
ascertaining the value of T as a result of the high fiuctuations in ﬁE
observed in this case.

In the case b/a = 0.2, the vortex ring was observed to break up
into two smaller rings as anticipated in §4, provided the Reynolds
number of the flow was high enough (I'/v > 1300 approximately)., Plate 6.4
shows the end view of the break-up process. The shape of the vortex
ring prior to the break-up may be compared with the configuration shown
in Fig. 6.5(c). After break-up, the two ensuing vortex rings are
observed to oscillate and travel in directions inclined at equal angles
to the z-axis; the size of the angles is such that the vortex rings
‘move almost parallel to each other. At the Reynolds number of the
experiment, the rings were not observed to rejoin. In Plate 6.5 individual
photographs of the plan view of the vortex ring at different stages of
the break—up process are shown. The time of the break—up of the vortex
ring is shown in Fig. 6.10; the time of the break-up anticipated in

§4 is also shown in the figure.



122

§7 Discussion

By means of numerical calculations using the cut—-off approximation,
it has been shown that a flat elliptic vortex ring of axes ratio,

‘0.8, 0.6 and 0.4, oscillates in time, the oscillations being periodic
only in the first of these cases. At the end of a half oscillation
cycle, the deviations of the shape of the vortex ring from an ellipse
with the orientation of its axes reversed becomes more prdnounced as
more eccentric cases are considered. In the case of a ring of axes
ratio 0.2, it is anticipated in §4 that the vortex ring would break up
through the touching of the cores of distinct portions of the vortex
ring. This suggests that there is a critical axes ratio, (b/a)cr’

0.4 > (b/ac):r > 0.2, above which an elliptic vortex ring oscillates

and below which it breaks up.

The results from experiments conducted at moderate Reynolds number
(/v ~ 2000) are in fair agreement with the results of the numerical
computations. The vortex ring oscillates in the cases of axes ratios
0.8, 0.6 and 0.4 in a manner strikingly similar to that anticipated
by the numerical calculations. In the case of the vortex ring of axes
ratio 0.2, the vortex ring breaks up into two sﬁaller rings; however,
the break ugzggégrs ©* whey" 7 11 the Reynolds number is high
enough (T/v > 1300 approximately).

The vortex trail of an aircraft breaks up into vortex rings as can
be seen from the photograph (Fig. 1) in Crow's (1970) paper. The
photograph shows that in the plane of maximum area (the horizontal plane)
the vortex rings, when they form, have roughly elliptic shape .

Using, as approximations, the data from Crow's paper (T = 268 m2/s,
so that T/v = 1.8 x 107’n core radius ¢y = 2.7 m for a B-47 aircraft

of span 35 m and moving at 220 m/s), and assuming that each ring when

formed has an elliptic shape with axes. ratio 0.2, is flat and lies in a



123

horizontal plane, the results of §54-6 suggest that each ring would
break up into two smaller rings at 107 s after the initial ring
formation; here the influence of other vortex rings in the trail is
neglected. Since a vortex ring in an aircraft trail, when formed, is
not flat and since the axes ratio appears from the photograph in Crow's
paper to be closer to 0.15 than 0.2 (also the size of the core is
comparatively much smaller than that used in the calculations and
observed in the experiments) it is expected that the actual break up
of the vortex ring would occur at an earlier time.

Not enough information is available in the photograph. However,
on comparison with Fig.6.5, it appears that the break-up may occur

30~40 s after the initial ring formation.
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%xes ratio semi-major L W a R=a+b/2 | c;/a
O/aO = b/a | axes of cm cm/s cm cm cm' /s
orifice
o)
cm
0.8 3.1 0.7 11.7 3.38 2.95 0.33 390
0.6 4 1.4 11.5 4 .44 3.55 0.31 332
0.4 4 1.2 9.1 4.61 3.22 0.32 370
0.2 4 0.4 4 4.72 2.83 0.23 196

Table 6.4 Estimates of vortex parameters predicted by method given in

Appendix B.
% /la, = b/a a R-a+b c./a v T Re = T/v
o0 2 E
cm cm/s | em“ /s
cm
0.8 3.17 2.85 0.31 £ .07 3.0 407 2714
0.6 4.37 3.5 0.25 + .05 2.8 437 2914
0.4 4.28 2,95 0.29 + .05 2.7 471 3140
0.2 - - 0.26 + .05 3.0 211 1473

Table 6.5 Measured values of vortex parameters.
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APPENDIX A: 1Initial core size used in the numerical calculations

A process of generation of a vortex ring in a perfect fluid by an
impulsive motion and subsequent annihilation of a flat elliptic disk
is considered here (c.f. G.I. Taylor (1953)).

Suppose in Cartesian coordinate system the edge of the disk is
given by

2

X
= 4+
2

[

(c > d) (A6.1)

]
et

Then if the disk is moved impulsively from rest at speed U normal to
its plane, the velocity potential at the disk is given by

2 2

_ - ud x 1/2
¢ = +m(l--—2"L2) (A6.2)
. c d
where
2 .2 /2
e = SE—:%—l and E(e) = [ V1- e? sin%6 do
c 0

are respectively the eccentricity of the ellipse and elliptic integral

of the second kind. The kinetic energy of the flow is given by

=3
1

-5 [ [ ¢ as
D disk on
(A6.3) -

211'cd2U2
3E(e)

and the impulse is given by

(A6.4)
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If now the disk is dissolved away, a finite vortex sheet is left
behind, the vortex lines being ellipses .of: the samé axes valis o¢ the
disk. Writing x = cr, cos 6, y = dr, sin 6 (0 < r, <1, -m<8 < T,

the circulation in the portion (%, 1 ) for any fixed 6 is, from (A6.2),

20d_; _ . 2)% (46.5)

)

This configuration cannot persist because the self-induced velocity is
infinite at r, = 1, The vortex elements respond in such a way that

the stronger vortex lines near T, = 1 tend to roll up the weaker parts
near r, = O round them. Thus the vorticity tends to concentrate in an

elliptic ring of major axis a and minor axis b, say, and of circulation

I' given by

20d (A6.6)

The impulse I and kinetic energy T of a vortex filament are given by

Moore & Saffman (1972) to be

I = 24xAZas

ln'>
|N

2
= & (S 8 . == 3,
T é {mln =~ 2+4A+ = 3 I‘(XA(V V). £)}ds

where p(s) is the radius of curvature at X, a point on the ring and V. —E VI
is approx1mately glven'by the right hand 81de~of (5.3~ }Jﬂipvs the veloc1ty
Aof a circular vortex ring of radius p and lying along the osculating circle

as X. For an elliptic vortex ring, therefore,

lﬂ= lR = Tmbk (46.7)

%
[(1 (8(ab) ) = 1+ AEG) - (1 - keDR(e)]  (A6.8)
0

and T = TR

where K(e) is the elliptic intergral of the first kind.



Following G.I. Taylor (1953), it may be assumed that

Tp = Tgs Iy = L3
so that using (A6.6), we have
ab = % cd
and core radius o is
c. = 8(ab)%exp[- EE— -1+A-Q - %ez) ESE% 1
0 2/3 E(e
Hence the cut-off length
_ L(t)\-% -%-A
u(t) = co(m) e
- 8(an) ) Er - T -3 (1 - ged
LZOS 2 2
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(46.9)

(A6.10)

(A6.11)

(A6.12)

Thus with this process of generation the cut-~off length does not depend

on the choice of A. This implies that any information obtained from

the governing equation (6.3.4) using the above cut-off length will be

independent- of the choice of swirl and axial velocities in the core. 1In

particular the period T of small oscillations of a circular vortex ring

of radius R = 332 is independent of A,
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APPENDIX B: Estimate of vortex parameters using Saffman's (1978) method

Estimates of the circulation I', the core radius g and the size
of the elliptic vortex ring generated can be obtained in the manner
suggested by Saffman (1978) for circular vortex rings. Here it is
assumed that when the flow has just been set into motion, and the vortex
sheet is of small extent and close to the edge, it behaves like a‘two—
dimensional vortex sheet formed at the edge of a semi-infinite flat

plate lying along z = 0, n > O (see fig. 6.11). 1Imitially the velocity

potential is given by

¢ = - ar% cos 5 x (B6.1)

where r = (n2+zz)% and o is determined by matching to the flow far from
the edge. For flow through an elliptic orifice of semi-major axis ay

and semi-minor axis bO in an infinite plane, the normal velocity'vz at the
orifice is given by Lamb (1932, p.151). Near a point (xO,yO) on the

edge of the ellipse, this is approximately

73 Aln|_%
(aOZbO)%(l - e2

cos? 90)%

where 4wA is the flux through the hole. By comparing this with

%'%£1X=“ , an estimate of a can be obtained. However, o varies along
r=[n|
the edge of the orifice which is undesirable. Thus an average value

is taken
? w/2
[ v, 252 a0k
- -, 10 _ 2VT A :
e = 2 S __ = (B6.2)
\™24 (a2 2b )?E(e)?
f d—;de %o "o’ *'©
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Then for small times, the vortex sheet which appears at the edge
depends on @ and t only. Its centre (Nl’zl)’ circulation F(rl) about
a small circle centred on the vertex of the spiral and total

circulation T shed from the edge is given by

%

2/3
/ , P(rl) = cgor;”,

N, = cl(at)2/3,

1 zZ; cz(at)

T = c‘{"m‘{"/stl/3 (86.3)

where C1s g5 Cg and c, are constants (estimates can be obtained from
Pullin's (1978) calculations as c, = 0.08, c, = 0.34, Cq = 4.08,
c, = 2;40).

If the piston stops moving at time t = W/L where W is the velocity
of the piston and L is the displacement, the rolled up vortex sheet

breaks away from the edge of the orifice. The semi-axes, a and b,

core radius cE and circulation T of the ensuing vortex ring are then

given by
/ / oy
aLy2/3 oLy2/3 _ %4 (oLy2/3
a=a+ l(W) s bl-b0+cl(w) g Z(W) s
c
3
_ 4/3,Ly1/3
T = chQ0 (w) (B6.4)

Since a/b # aO/bO, the vortex ring will have a different eccentricity
from that of the orifice. However, for small values of L this change

sbopping  rmage vorlia
will be small. Also, the interaction of the ring with the - A would
lead to a decrease in a and b below that given in (B6.4) (Sheffield 1977).

Hence, for the range of eccentricities used here, this discrepancy is

ignored and a and b are taken to be

c,(a +b ) c,(a .+b )
_ 1'"0 0" ,aL.2/3 - 1*0 07 ,aL.2/3
a = a0(1 + -————-Zaobo (—W ), b bo(l + —_—zaobo (—W) ) (B6.5)

_JE.

From (B6.1) the swirl velocity in the core is ~r



130

CHAPTER 7: INTERACTION BETWEEN A VORTEX

FILAMENT AND AN APPROACHING
RIGID SPHERE

§1 Introduction

In consideration of vortex filaments in inviscid flow, it is often
of interest to determine how these interact with each other or with
surfaces present in the flow field. The trailing vortices of an aircraft
and motion of two co-axial vortex rings are examples of interacting
vortex filaments. The objective of this.chapéer is to determine the
interaction between a vortex filament and a moving bluff body.

The particular situation considered is that when a rigid sphere,
which can be regarded as a typical bluff body, approaches an infinitely
long straight vortex filament from infinity at a uniform speed. The
evolution of the vortex in such a situation, from its straight
configuration, is studied. The fluid is regarded as being inviscid
and incompressible and of uniform density.

The motion of the vortex is symmetrical about a plane which passes
through the centre of the sphere and whose normal is parallel to the
axis of the undisturbed straight vortex. Thus the situation is equivalent
to the case of a vortex filament moving in a uniform stream over a rigid
plane with a hemi-spherical hump in its path.

The problem is treated in two stages. When the sphere is at a
large distance away from the vortex, the interaction between the sphere
and the vortex is weak so that the evolution can be determined from
linear theory. Thus in §§2,3(b) the equation of motion of the filament
(5.3.1) is linearized and solved to obtain the expression for the
instantaneous shape of the vortex; the velocity contribution KA in (5.3.1)

is obtained approximately using spherical harmonic analysis.
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The shape of the vortex given by linear theory is evaluated at a
tige t when the sphere, approaching at a uniform speed U, is at a
prescribed distance away from the position of the undisturbed vortex.
This is used as the starting configuration of the vortex for the full
non-linear marching problem (5.3.1) which is integrated numerically for
subsequent times. In §4, the numerical procedure used in the calculation
is described while in §5 the image system of a vortex element in a
sphere, due to Lighthill (1956), is described and a full expression for

V. 1s obtained for use in the numerical calculations.

AL,

The vortex is chosen to have a uniform distribution in its core.
In (5.3.1), Crow's (1970) method of cut-off is used for the linear
analysis and that of Rosenhead (Moore (1972)) for the numerical
calculations.

The numerical results are presented in §6. The neglect of viscous
diffusion and the wake of the sphere means that the results are of only
approximate validity in real fluid flows. Indeed a qualitative
experiment with a bath—tub vortex shows that although the vortex
commences to move as anticipated in §6, when the sphere is close to the
vortex, the wake appears to interact strongly with the.vortex causing

it to break up.

In §3(a) the interagtion between a point source and a vortex is
discussed and for a hollow vortex the results are compared with those
obtained from classical analysis and given in Appendix A; the case of
an interaction between a source and a vortex in compressible flow was
studied by Ffowcs Williams & O'Shea (1971). The two results are

compared in Table 7.1 and provide a check on the cut-off theory in the

case of infinitesimal disturbances to a vortex.
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§2 Linearized equation of motion

The equation of motion of é vortex filament, discussed in Chapter 5,
is linearized in this section in order to consider the evolution of an
infinitely long straight vortex filament when subjected to infinitesimal
disturbances due to a non-uniform external velocity field.

Let rectangular axes Oxyz be chosen so that in the undisturbed
state, Oz lies along the axis of the vortex filament. If the vortex
has strength T and if at time t its axis occupies the curve given

parametrically by X(g,t), then its motion is govermed by equation (5.3.1),

X I z X (2(g,,t) - X(g,£))dg , :
— (E_,t) = = — (E,t) A + V(g ,t (7.2.1)
ot 0 47w -~ ag l_}_c.(go’t) - E(ﬁst)|3 £ "0

where YE(go,t) is the contribution to the velocity at EO from external
sources which produce an irrotational velocity field. The notation §
implies that a suitable cut-off is used to make the line integral finite
at £ = &0. For the linear analysis, the method of cut-off employed
here is that due to Crow (1970) and described in Chapter 5, §2. This
requires that a portion (Eo—e, & * €) be removed from the range of
integration, € being chosen so that |s(§o+e, t) - s(&o-e,t)l = ZGéc

where s(g,t) denotes distance along the filament, ¢ is the core-radius

X ~
and Gc is a constant. Note that since %; = t, a unit tangent vector
X
to the vortex, it follows that %% = 53 . so that the cut-off length
may be written
E0+s 3%
= — .2.2
26 c f T (7 )
Eo-e

From (5.2.3), the comstant §. is given by

4w2 ¢ 2
log 26 = % - — rv dr (7.2.3)
c 2 o
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where v is the swirl velocity in the core and there is no axial flow

in the filament. For a uniform vortex v = I'r/21rc2 so that

log 26c = 1/4 (7.2.4)
and for a hollow vortex
log 26c = 1/2 (7.2.5)

As explained in Chapter 5, the core cross-section is uniform
along the filament, the core radius c¢ being just that function of time
only which conserves the volume of the filament. Thus ¢ = c(t).

However, as pointed out in Chapter 5, for infinitesimal disturbances
to the vortex, the effect of the variation of ¢ with time on the
governing equation is of second order in the perturbation quantity

and is neglected. Thus, for linear amalysis, ¢ = % where 5 is the

initial value of the core radius.

Equation (7.2.1) is to be linearized and solved subject to the

initial condition applied at time t = t,
x(g,r)) = gk -0 < E<e (7.2.6)

where 2 is the length scale of the particular problem considered.
For an infinitesimal disturbance to the vortex, the parametric

equation of the perturbed vortex is taken as
X(g,8) = p(gk + ax'(£,t) + 0(a2)) (7.2.7)

where g << 1. o measures the amplitude of the response of the vortex.
The external velocity field V; must also be expanded in terms of a.

Thus

Ve(E,8) = V' (g,t) + 0(e?) (7.2.8)
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Substituting (7.2.7) and (7.2.8) into (7.2.1) and retaining terms

to order o only gives

ox'
3x’ T ® 5'(5o’t)7§'(g’t)'(go'g)EE (g,t) LALCS)
3Bt =—7 kA [ 3 dg + ———
4l - e - g]
[6 ] 0
[+
(7.2.9)
In view of (7.2.5) and the constancy of the core radius
8§ c. = 2e(1 + 0(a)) (7.2.10)

c O

To solve (7.2.9) for a given V!, the Fourier transform of the
equation with respect to go is taken. Thus, writing
ikg X ) ikE,

dgys Yolk,t) = [ V(g ,t)e dg, (7.2.11)

x(k,t) = | x' (5, t)e

the transform equation, after a change in variable of the cut-off

integral, becomes

~ . 2
9% ®  ikE ®  x"(E ,t)=x"(E +x,t) + x=— x'(E_+x,t)
X T 0 Z 52t TE M5 ax = "0 X
3% (k,t) =—75 kA [ e dE, f 3 dy
4wl - (5] [x]
[ o4

where now the cut-off in the inmer intégral is implied at x = 0. Thus,
since the range of this integral is now independent of go, the order of
the integration can simply be changed to give (suppressing the time

dependence),

. ]
®  ikE ©  x'"(g )-x"(g_+y)+xi— x'(E_+¥)
-0 =00 3
| x|
[5c]
» _ iky . iky . o _ _ .
} A(k) f (1-e 1k§e ) dy = k?E(k) f 1-cos x3x sin X ix
z IXI ké ¢ x
c 0

(6.1 L
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in view of (7.2.10). The integral on the right-hand side can be

written in terms of cosine integral (ci(n)) to give

9% k6 e i
— (1) = - o P —Dk A 2k, t) + = (k,t)
ot 2 2 - - 2
278
where
w(n) = %[(cos n - 1)/r12 + sin n/n - Ci(n)]

(7.2.12)

In §3, (7.2.12) is used to consider the response of an infinitely

long straight vortex to (a) a point soivce switched on at t

=0 at a

distance f from the vortex and (b) a sphere approaching the vortex from

infinity.
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- §83 Vortex interaction: Linear theory

(a) A point source in the external field.

Suppose a point source of strength Q(t) is switched on at time t = 0
at % = (-£,0,0) where f is its distance from the undisturbed position
of the vortex. 1In the absence of the vortex the velocity potential of

the flow at a field point x is given by

_H(E)Q(E) (7.3.1)

x -

op(x) =

%

so that the external irrotational velocity field Ug(x) is given by

Ug = Vég-

The length scale of the problem is f. Thus in (7.2.7) we choose
L2 = £ (7.3.2)

The contribution to velocity at X(E,t) due to the source is given by

Ve =.HE(&(£,t)). Thus in view of (7.3.2),
£ k-i x' 3(g k-i)(x!(g k-i))
Uy(ego0) = HEYOC Sy (e - = O 4 0(aD)]
- ggk-i o= = ERSH
(7.3.3)
2

Thus if the response of the vortex is considered on a time scale O(%r)
and Q.0 is a typical magnitude of Q(t), it follows from (7.2.8) and

(7.2.9) that the appropriate choice of a is

%

T (7.3.4)

and this is required to be small in the linear analysis. Thus in view

of (7.2.9)
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gk - i
v '(g,,t) = HEMAE) ;0o =, (7.3.5)
Qf g kil

Thus substituting this into (7.2.9) and writing x' = (x',y',z'), it

follows from the initial condition x'(£,0) = 0 that

I‘Eo

t
z'(g,,t) = 5373 é Q(t)dt | (7.3.6)

Qof2(1+go )

(7.3.6) implies thag the approximation obtained here will hold so long
t Q. f
as f Q(t)dt = 0(0—).
0 r
To determine x' and y' the Fourier transform of !E' is taken with

respect to Eo and substituted into (7.2.12). Thus writing

x(k,t) = x.i and y(k,t) = é.i we have

9% r .2 ~  2H(£)TQ(t
5%’ = S 2 Kw(ks e /)y + ——-—%—Q-l |k|K1(|k|)
mf f Qo
(7.3.7)
¥y - _ 2 -
3t 7 Kuks, cp/)x
2nf
Hence,
x'(g ,t) = 2r ; 9—(t—1) ? kK. (k)cos| I kzm(kﬁ c./£f)T] cos k& dk drt
0 20 % o ! omE? c 0 0
y'(g ,t) = - 2 ? g—(t—T) ? kK (k)sinp—ll- kzm(ka c./f)t]lcos ki _ dk dt
0 nfz 0 QO 0 1 waz Y 0
(7.3.8)

In Appendix A, for comparison, results corresponding to (7.3.8)
are obtained using a classical method for the case of a hollow vortex.
For a hollow vortex §_ is given by (7.2.5) and in Table 7.1

y'(E,t) as given by (7.3.8) for this case is compared with the corresponding
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result yc(z,t) = g?(z,t) (see A7.1), where z = f(&+az'(E,t)), for a
fange of values of the parameter co/f. For definiteness, Q(t) = Q>
E=0and t = waZ/P are chosen; note that z'(0,t) = 0. There is a

good agreement between the results for values of co/f‘i 0.1.

cO/f y' - Ve
yc
.001 2.3 x 107/
.ol 3.5 x 1077
1 9.8 x 10°%
2 5.2 x 1072
3 .22
5 .77

Table 7.1
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(b) An approaching sphere in the external field

We now consider fhe response of the infinitely long straight vortex
to an approaching rigid sphere which is brought at a uniform speed from
infinity to the vortex.

When the sphere is sufficiently far away from the vortex, the
response is weak and can be approximately determined from the linearized
equation (7.2.9) with the appropriate choice of ZE'. The solution to
the equation is obtained here and is used later to determine the
approximate shape of the vortex at a time when the sphere is at a
prescribed distance from the pbsition of the undisturbed vortex. This
shape is then used as the initial configuration of the vortex for the
fully non-linear marching problem (7.2.1) and the subsequent evolution
of the vortex is determined numerically.

For convenience, the origin of time is chosen so that at t =0
the centre of the approaching sphere is at the position of the undisturbed
vortex. Thus t = —» corresponds to the time when the sphe;e is at
infinity and the vortex is straight. If the undisturbed position of the

vortex is given by (7.2.6), where now

2 = a (7.3.9)

and to = -», and if the sphere has a uniform speed U, then at time t

the centre of the sphere is at (see Fig. 7.1)

_)_{o(t) = (-£, 0, 0) ' (7.3.10)
where
f = -Ut, —® < t < ®

The external velocity field is due to the image vorticity in the
sphere and due to the motion of the sphere. In the absence of the

vortex, the velocity at a field point x can be described by the potential
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(X)) = oo+ by (7.3.11)

where ¢I and ¢M are respectively the contributions due to the image
vorticity and the motion of the sphere.
To evaluate ¢I when the vortex is given by its perturbed position

(7.2.7), we write
_ ' 2
¢; = ¢OI(1 + ap .+ 0(a%)) (7.3.12)

where ¢OI is the velocity potential due to image of the undisturbed
vortex in the sphere and the 0(a¢OI) terms allow for the perturbation

from the straight vortex.

¢OI can be determined by a spherical harmonic analysis as follows.
In a coordinate frame 6&;2, fixed with respect to the centre of the sphere,

the undisturbed position of the vortex is givem by Y = z where

E = K(E)—w) - (t) = (f, O, ag) -0 < E < ® (7_3.13)

%,
In the absence of the sphere, the velocity field at a field point

Y = (x,y,2) is due to the straight vortex and the velocity potential

is given by

%0 = 2% z
0 27 x - f
= _I_‘__ tan_l (r sin O Sin w ) (7-3.14)

T sin 6 cos Y- £

2 2

in terms of spherical polars (r,0,y), r“ = ;2

+ ; + ;2. We seek the
disturbance potential ¢OI when a rigid sphere is introduced. ¢OI is to

satisfy the boundary condition

(7.3.15)

|
o

a.
r=a
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For r/f < 1, ¢0 can be expanded in terms of spherical solid

harmonics (Lamb, Ch. V, 1932) as

3 .
¢y = g;{r sin © P L (cos 8) + ———555—22 P, (cos 8) + "'{%B—ém P33(cose)+---
6f

(7.3.16)

where Pns(u) are the modified Legendre polynomials. Corresponding to
each harmonic term on the right hand side of (7.3.16), there exists a

complementary harmonic function obtained by dividing the term by

2n+ . . . . . .
" 1 where n is the degree of the given harmonic. 1s the appropriate

¢OI

linear combination of these complementary functions. Thus in view of

(7.3.15),
3 5 7 .
T . 1 . 2 3
¢0I E_{ az siny P, (cos8) + a3 7 sin 2y P, (cosd) + 5__§£B§JE

T or 9r~ £ 60r £
3
X P3 (cos 8) + ...}

or in terms of x, §, z

rg3 2= 7,.22 2
bop = - 2 {z 2a 57 4 & (gxh YD) oa .. } (7.3.17)
war 3fr 4E

(Alternatively, from the sphere theorem (Weiss (1944))

. 2
Trfy 3 udu )

bpr = I
o1 Z TR PN 3

¢ (¥) in (7.3.10) is given by

U.Y

6 () = -% a> - (7.3.18)
r

Thus the external velocity field Up(Y) is given by

Tg(D) = Vo * bp (1 + 0(@))).
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In view of (7.2.7), the parametric equation of the perturbed

~ o o

vortex in Oxyz frame is
¥(E,t) = T + aax'(£,t) + 0(ac?) | (7.3.19)

where Y is given by (7.3.13). Then Vz(E,t) = EE(Z(E’t)) is given by

3 2 4
ven = -t e 3L -
R Fhe: < A Y]
3 3(U.Y)Y
-— — + 0(a)} (7.3.20)
2|¥| %]

Thus if the response of the vortex is considered on a time scale of

2
0(%—) and U = O(g), then it follows from (7.2.8) and (7.2.9) that

o = 0(53) (since [Y¥| = 0(£)), and this is required to be small in the
linear analysis. Thus, since f = f(t), the linear analysis will be
valid provided t < T < 0, where T is such that

3
o = a—3<< 1 (7.3.21)

fr

where £, = |£¢T)|. Thus

I‘fT3 2 £ 3 3(0.D)Y
V() = - ——= 1+ =) j - —= (U - ———) (7.3.22)
E 0 4ne 7] 313)? 2|3 7] 2

The contribution from the two terms in (7.3.22) is comparable if

£ = o(r/u).

Substituting (7.3.22) into (7.2.9) and writing x' = (x',y',z')

and using x'(g,-=) = 0 gives

3%
- a [s]
az' (g ,t) = 7 7,372 <t <T (7.3.23)

2(U°t” + 3260
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To determine x'(Eo,t) and y'(Eo,t), the Fourier transform of

Yé is taken with respect to EO and substituted into (7.2.10). This gives

~ 2
ax _ Tkw , ~
3t = 7 (k6 cy/a)y + Al(k,t)
2ma
t<T <0 (7.3.24)
A 2
EZ - _ Tk“w ~
T > (kGc cO/a)x + Az(k,t)
2Ta
where
' U (ka o (kEy 20 (KE
aAl(k,,t) =7 {f Kl(a) kzxz( a)}
k>0 (7.3.25)
. 2.2
- _ .  ka. kf, _4ak" Kk

Here Kﬁ(n) is the mth order Bessel's function of the second kind.

To solve (7.3.24), the definition of Al(k,t) and Az(k,t) is
arbitrarily extended to the range t > T and the Fourier-transform of
(7.3.24) with respect to t is taken. Defining half-range Fourier-

transforms as

- - - - - —T - L
x, x x_ x
T . T .
v, @ vy | v 0 y |
r | = [ efae, | o =] e*%tat  (7.3.26)
Al O A Ae | A
T T
Aos ) Ay AZJ
. - — . — o L

Equations for (xf,‘yf) and (xf, yf), obtained on transforming (7.3.19)

appropriately, are solved and inverted as
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® 1 ~tHb x, ist,, |, TiC x -ist

= 5= i e ag + | e ds (7.3.27)
- —o+ib T i —e—ic T
y v, | y_

where the paths of integration are closed in the appropriate half of
the s-plane (b,c > 0) for inversiomn. Finally, % and ¥ are inverted

with respect to k to give

ax'(Eo,t) o o cosh sing
_ 1 |
ay'(so,t) == g g‘{“Al(k’t+t1) —sinb aAz(k,t+t1) coad oskEodtldk t<T

(7.3.28)

ké c
where § = — 5 Kk (——g—g)t1 and aAi and aA, are given by (7.3.25).
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§4. Approaching sphere in the proximity of the vortex

In this section, a procedure is described for following the
evolution of the vortex filament in the presence of the approaching
sphere from its configuration at a time tg (< T <0), given by (7.2.7),

.(7.3.23) and (7.3.28), for times subsequent to t_.

The evolution is followed by a step-wise numerical integration of
the integro-differential equation (7.2.1), the contribution !E(go,t)
due to the evolving image system and due to the motion of the sphere
being evaluated at each time step. The image system is discussed in §5
where an expression for YE is obtained.

As explained in Chapter 5, the cut-off method employed in the linear
analysis in §6§2,3 is inconvenient to use for numerical work. Instead,

(as in Chapter 6) following Moore (1972), Rosenhead's method of cut—off

is used here; the method was described in the latter part of Chapter 5 §2.
Thus in (7.2.1) the denominator of the integrand in the self-induced velo-
‘city line integral is replaced by {lg(Eo,t) - §(E,t)|2+u2}3/2, where p is

proportional to the core-radius c and the integration is carried out

over the entire range of the integration. Thus u = 26Rc where 6R is

given by (5.2.5). For a uniform vortex with no axial flow, this gives
log 26p = - 3/4 ' (7.4.1)

The Lagrangian parameter £ is chosen as in §3 so that in a fixed
Cartesian coordinate system Oxyz the vortex filament in its undisturbed

state is given by (7.2.6) as
X(g,-=) = (0,0,af) — < E<w (7.4.2)

since tO = == gnd &£ = a.
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At subsequent times § = constant always represents the same fluid

particle.

In view of (7.3.28), it is expected that the motion of the vortex
filament will be symmetrical about z = O plane so that, writing

X(&,t) = (x,y,2),

x(-g,t) = x(&,t)
y(-g,t) = y(g,t) 0<g<w (7.4.3)
z(-g,t) = -z(g,t)

Hence it is only necessary to follow the portion 0 < £ < = of the
filament, say, and use (7.4.3) to determine the shape of the remaining
portion of the filament.

Thus, given an expression for !t(&,t), the motion of the vortex can
be determined by simply integrating (7.2.1) forward in time and
calculating the length of the filament at each time step to obtain the
value of u(t). However, a method for dealing with the infinite range
of the integration must be described.

It is expected that in the time of interest, the position of those
portions of the vortex which are further than a dist;nce of a few radii
of the sphere away from z = O plane will not be significantly different
from that given by (7.3.23) and (7.3.28). Thus, in view of the decay
of 5"with § = %=, the range of the numerical integration is truncated
from (-=,») to [-A,A] and the portions of the vortex corresponding to
(-»,-A) and (A,») are assumed to be straight and fixed in their
undisturbed position. The contribution from these straight portions to
the velocity at the points on the portion corresponding to [-A,A] is
evaluated analytically.

This method of dividing up the range of integration means that

small kinks will develop at § = #A and these will affect the velocity at
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points near £ = A, Thus A must be chosen so that these points are well
outside the range of interest. However, the disturbance due to the

kinks will propagate down the length of the vortex and the calculations
must be stopped once this starts affecting the velocity at points in the
range of interest. In the calculations described below, when the
calculations were stopped, the disturbance due to the kinks had progressed
only a short distance down the vortex and the difficulty did not arise.

Thus the self-induced velocity integral in (7.2.1) is written as

® 3X(g,t) (X(g,t)-X(g,t))dg

A
- 3 {|X(g,.t)-X(¢, £) [ 2+ 3/2
= (R(E,,t)-K(E,t))dE )
= — (£,t) A +1 (7.4.4
-4 % (R(E0)-R(E,0) [RD2 ~F

where
; f },, kA(X(gO,t)—aEk)
I(e)=(] +]) dg
s (&g, »t)-agk | 2o’y
) kAX(E,t) - ad - z(Ey,t)
|§(£o,t)|2+u2 (|3_(go,t)-a.A5r2+u2)1/2
aA + Z(EO:t) :
- 73 ) (7.4.5)

(|x(5y, ) +ank| 2P}

Although the integrand in the cut—-off integral is finite everywhere,
it is large in the neighbourhood of £ = go and this would cause loss of
accuracy in evaluating the integral. Thus, as in Chapter 6, it is

necegsary to subtract off a suitable function from the integrand and

write the equation of motion (7.2.1) as
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X r &4 %X (R(E,,t)-X(E,t))
Fve (Eo,t) = f { % 7 2.3/2
-A (|R(Ey,t)-R(E, ) | “+u”) /
3X 32x
- (EE)O A (;-E)O P(&,t) }dE
g
r 9% a?g A '
* 773800 A (;EE)O IA P(E,£)dE + I_(E ,t) + V(£ ,t)  (7.4.6)
where
5(5-€ )’
P(g,t) = X (7.4.7)
(g2 + WP/

and ls(E,t) is given by (7.4.5). The integrand in the first integral

in (7.4.6) is 0(1) everywhere while the second integral is elementary.
For the full non-linear problem, the variations in core size

cannot be ignored so that in view of the uniformity of the vortex

cross—section and conservation of volume,

ag)y /2 (7.4.8)

we) = 2800 xS |5

A 93X
R0 ‘ZaA I

-A

where o is the uniform radius of the vortex filament in the undisturbed
state and where the volume of the portion of the vortex corresponding to
[-A,;A] is required to remain constant.

Since the displacement of the vortex from its undisturbed state
decreases away from z = O plane (cf. (7.3.23)), the distribution of the
Lagrangian points on the vortex can be chosen in such a way that the

size of the spatial grid increases away from & = O point. The choice

made here is

E = sgn(V)Vz —0 ¢V <™ (7.4.9)
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However, any suitable choice of function can be used. The range
(-va, YAl of V was divided into three parts, [-vA, -A1], [—AI,AI]
and [Al,/X]. The range [_AI’AI] was divided into 2N1 portions by 2N1+1
équally spaced grid points. 1In the outer ranges, [-/K, -A1] and
[Al,/K], the grid spacing was chosen to be twice that in [-AI,AI],
A being chosen so that there are 2N2 portions of equal length in each
of the outer ranges; hence a total of 2(N1+N2) + 1 points per half range
[0,YA] was used. The spatial derivatives were calculated using four-
point differences at all points; the particular choice of grid spacing
allowed the use of the centred formulae at points near V = A,
Simpson's rule was used to evaluate the integrals. The integration
forward in time was effected by the fourth-order Runge-Kutta formula,
used because of its stability.

In 85 an expression for !E is obtained and the results of the

calculations are described in §6.
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§5 External velocity field

The image sfstem of a vortex element in a sphere has been given
by Lighthill (1956). This is briefly described here and an expression
for the velocity field due to the image system of an infinitely long
vortex is obtained.

Suppose that, with the centre of a sphere of radius a at the
origin, a vortex element of length ds and circulation T' is situated at ¥,

(see fig. 7.1). The strength of the element J is defined as

4 .
J = Tg= ds (7.5.1)
= 8
Then, writing Izll = 1, the image system of the vortex element is

given by

2a (i'zllzl
(i) a vortex element of strength = (———=3—= - %J) at the inverse

1 ry
int ¥ = (ft, and
point Y .;I Y, an
(ii) a line vortex of circulation -(g,zl)/arl stretching from the

inverse point to the centre of the sphere.

' The image system satisfies the boundary condition at the surface
of the sphere and the requirement that the vorticity field inside the
sphere be solenoidal. The latter condition is necessary if the corres-
ponding Biot-Savart velocity field is to be irrotational.

For an infinitely long straight vortex filament, (i) and (ii) imply

that the imagT system consists of a vortex ring given by
2z |X

IX“ XI/ZI = —:%—— and a vortex sheet extending over the interior of

that circle (cf. Weiss (1944)).

In view of (i) and (ii) the velocity at a field point Y due to the

image system of a vortex element at Y, is given by
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(2(£'.¥.1)Z.1_.‘I)A(Z._ Ty ] -
3 4Ta

S

&% T Zrr 2 5 513
’ ! |t - a™/zy 4] o [ty ]
(7.5.2)
where ii = Xl/rl. Thus in view of (7.5.1),
Su = Wds (7.5.3)
where
%X, 9 a’g,
_ra (2(3;— Y)Y, - =) A (X - )
= e, U aZ, o 13 }
1 lx - (=) %]
Ty =1
9%y a’/r
—.Y.) . 1
L A di (7.5.4)
Y MY — 5
a 0 IX_AX]_I

Note that the integral in the expression is elementary.

Equation (7.5.3) is used here to obtain an expression for the
instantaneous velocity due to the image system of the evolving
infinitely long vortex filament of §4 so that Xl is given parametrically by

-0 < f < ®

Y, = X(g,t) - X (t) (7.5.5)
=1 = =0 - <t < @

where Zo(t) is given byA(7.3.9). The vortex is.tegatded as being closed
by a semi-circle of infinite radius (this is consistent with the
spherical harmonic analysis of §3 since in obtaining the velocity
potential ¢o'(7.3.9) of an infinitely long.straight vortex, the same
assumption is made). The velocity field is then given by §Hds where

the integral is taken round the closed loop. However, if W is expanded

in powers of a/r1 (a/r1 < 1) as
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Y 2 ey (Y.Y,) . oY 3Y
Fa -1, a =1, ¢ =179, =1 5 v _ =1
W= 3 H A=+ 35 o A Y + =5 GG=E)EA D - 3G4D)]
mnr I'l r
b
+ 0(_4)} (7.5.6)
|

and integrated term by term, the first term integrates to zero so that

Ta

puds = §(W-—25Y4 3;1) ds (7.5.7)

b4y
The integrand in the integral on the right hand side is of O(1/R2) on
the semi-circular path of integration, where R is the radius of the
semi-circle, so that in the limit R + «, integration along this path

gives null contribution. Thus

_ _ _Ta 3 3
$wds = f W 3 Y A2 )ds (7.5.8)

—<E <o 4or

if the vortex is given by the parametric equation (7.5.5).

The instantaneous position of any point on the portion of the
vortex filament corresponding to -A < £ < A is governed by the evolution
equation (7.4.6). The portions corresponding to -® < £ < -A and A< £ < w

are straight (see §4) and for points on these portions Y, is given by

1

€6 (-=, -A), (A,»)
Y,(g,t) = (-Ut, 0, aE) (7.5.9)
t 6 (-=,)

so that ds = (0, 0, a)ds.
An expression for the velocity due to the straight portions can

be obtained from (7.5.3). After an integration by parts of the integral

2
with respect to A and a change of variable A = %— 11, the order of the

1

integration can be changed and the integration with respect to &
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performed. Thus (7.5.7) becomes

fuds = [ @--TEyad-§)ds+u(® (7.5.10)
~A<E<A 4o
where
Ta 2 2aA - . 2 .
M_(Y) = —={Y AL(£9A, (1) + 2 = ——F—2)k-fA _(1)i] + a“fA, (1)]
s P 10 (£2:a2a2)% 11 10
3,2 1
+ :i_ Y A ({ [(X.1)(A,,(MEL + A, (VDK) + (X.R(W)) (A, (MEi+a,, (M)K)1dA}
(7.5.11)
Here
P(n) = fi _ahn ¥
Bln i-—/1X

and Ahm(n) are given in Appendix B.

Putting A = 0 in (7.5.11), we obtain the velocity due to the image
sytem of an infinitely long straight vortex. The result is in agreement
with that given by Weiss (1944) for this case; Weiss obtained the result
using his sphere theorem. Note that the sphere theorem is inconvenient
to use in the present non-linear problem since it requires evaluating
the velocity potential of the evolving vortex at each time. step.

As a further check, putting A = O in (7.5.11) and expanding M in
powers of a2/r2 gives a result in agreement with the spherical harmonic
analysis of §3.

Finally, in view of the motion of the sphere, the external velocity

U;(¥) at a field point Y in the absence of the vortex filament is given by

U1 = W ds + Vo (7.5.12)

where ¢, is given by (7.3.17).
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Hence, with Zl given by (7.5.5) and writing

5_{0 = _)g(go,t) - J_KO(t) —_— <t €@ (7.5.13)

and using (7.5.10), (7.5.4) and ds = adf, we have !E(Eo,t) (= HE(XO))

is given by

aY agl )
| -A |Y1||R| %o L
3 3
Ua 3a(U.Y )Y
+ M (Y) - — + — 00 (7.5.14)
s =0 ZIY |3 IY 15
<0 =0
where
a%g
R, = Y - Tt
Bt HTTET
5Y 1
= a da
= (== .%¥)X rxf s
- aS 1°—-1 0 IY_A_a_? I3
- r1 =1

and M_ is given by (7.5.11).
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§6 Numerical results

To present the results, a, the radius of the sphere,is chosen

as the unit of length and a non-dimensional time defined by

- I -
t; = 5 (t ts) (7.6.1)
4ma

is used. Here the time origin is shifted to t (<T < 0), the "switch-
over" time when the shape of the vortex is evaluated from the linear
analysis of §3 and the evolution of the vortex from this configuration
followed numerically for subsequent times. In view of the consideratioms
of §3, the relative importance of the various terms in YE as given by

(7.5.14) depends on a parameter B which is defined as

T
B = el | (7.6.2)

The initial core radius was chosen as

co/a = 0,125 (7.6.3)

This allowed the evolution of the vortex to be followed using a

reasonable number of grid points. The core size is not small as required
by the cut-off theory since it is expected that when the sphere is close
to the vortex, the portion of the vortex which is of interest will have

a radius of curvature p of 0(a). However, as explained in Chapter 6,

in view of the agreement between Saffman's (1970) formula for the velocity
of a circular vortex ring and the corresponding numerical results of
Fraenkel (1970) and Norbury (1973) for values of co/p which are not

small compared to unity, and because the error in the cut-off approximation
to this velocity is of the same order as in Saffman's formula, it is
reasonable to expect, although no rigorous proof is available, that the

cut-off approximation will hold equally good for such values of co/p.
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In any case the results are not very semsitive to the value of co/p;
this is because the velocity obtained by the cut-off approximation
depends only logarithmically on the cut-off length and hence on the
core size.

The vorticity distribution in the vortex was taken to be uniform
so that &, is given by (7.4.1).

It is clear from the results (7.3.28) of the linear analysis that
at any given time the § = O point will be most displaced from its
undisturbed position. The y-displacement of the £ = 0 point was ‘
calculated from (7.3.28) for various values of the ratio a/f where f
is as in (7.3.9). The double integral in (7.3.28) was evaluated by
splitting the infinite range of the integral into various parts depending
on the frequency of oscillation of the integrand. Over the parts where
the.integrand was highly osciilatory, one of the integrals was
approximated using standard methods. Simpson's rule was used to evaluate
the integrals. The results for three values of B, namely B = 10, 5
and 2.5, are shown in Fig. 7.2 where |y/f| is plotted against a/f.

It was decided to follow the evolution of the vortex, subsequent
to time t., numerically for the cases B = 10 and B = 5. The choice of
tg is made in the following way. For the two cases considered, the
times Es when|y/f|is 2%Z, 5% etc. is determined from Fig. 7.2. At each
time, the shape of the vortex is evaluated from (7.2.7), (7.3.23) and
(7.3.28). Using this as starting configuration of the vortex, equation
(7.4.6) is integrated numerically over a trial period and the values of
y/f obtained from the calculationms afe compared with the results of
linear analysis. t_ is then chosen to be the maximum value of Es for

s

which there is reasonable agreement between the two results over the

trial period.
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For both B = 10 and B = 5 cases, it was found possible to choose
ts‘so that y/f was 9% at ts' However, for convenience, tS was chosen

so that for both cases a/f = 0.5. This implies

_ 2a
ts ——T (7-6.4)

From Fig. 7.2,|y/f|is 9% at this time for B = 10 case and 7% for B = 5.

Thus linear theory is adequate until the sphere is fairly close to the

vortex.

and time step At1

Table 7.2 shows-the values of N Nz, A, A

1’ 1

used in the calculations. Trial and error showed that these gave

adequate accuracy.

B N1 N2 A A1 At1

5 10 11 16.384 .6325 .008

1o 10 11 16.384 .6325 .016
Table 7.2

. * .
At time t, = t1 ,» shown in Table 7.3, the centre of the core at

1
E = O point was a distance d* (see Table 7.3) away from the centre of
the sphere. This implies that the core of the vortex is touching the
sphere. The situation is similar to that of two vortex filaments with
their cores touching. The results at this stage may be viewed with
scepticism since the calculations are based on the assumption that the
separation between the vortex and its image is large. However, by
means of a numerical calculation with vortices in two-dimensions, in

which the core was allowed for, Moore (1972) was able to show that the

Biot-Savart formula gives roughly the correct velocity even when the
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cores are touching. Iﬁ the present case, the vortex at & = O may be
regarded as being in contact with a tangent plane and the local situation
represented two-dimensionally? Moore's study then suggests that
although the cores will be distorted so that the cut-off length will
change, the approximations on which the present calculations are based
will be reasonably adequate even when the vortex core is close to the
sphere.

In order to determine the maximum‘negative y-displacement, A it
was decided to continue with the numerical integration up to the time
tl = I:M when this was achieved. |yM| was maximum when the x—coordinate
of £ = 0 point coincided with the x-coordinate of the centre of the

sphere. The values of Yy and t, are shown in Table 7.3.

* * T
B t1 d tH YM t1
5 2.568 1.119 2.672 -1.057 2.608
10 3.600 1.123 3.710 -1.057 3.696
Table 7.3

The position of the portion of the vortex near z = O plane, due to
its proximity to the sphere, changes rapidly while points on the vortex
a distance further than a from the z = 0 plane are displaced by a small

amount. At t, = t; (see Table 7.3) numerical instability set in in the
neighbourhood of z = 0 plane; presumably because of the rapid changes

there and because the distance between the grid points is not small

* ) [

An improvement on this would be to consider numerically the motion of
a two-dimensional vortex of finite core round a cylinder. However,
this -has not been attempted.
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compared with the separation between the vortex centre and the image.

To cure this, the calculations were stopped at t1 = Ei - 2At1 and
restarted with more points so that the grid spacing was reduced by

half and the time step was taken to be %Atl. This removed the instability.

In Fig. 7.2 various values of [y/f| for times subsequent to t_  are
shown for the two cases considered and compared with the corresponding
results of linear analysis. The results from the numerical calculations
are shown up to the time when |y/f| achieves a maximum value. For
subsequent times the value of [y/f[ drops. The reason is apparent from
Fig. 7.3 which shows the track of £ = O point in the x~y plane for the
case B = 10. As the vortex 'clears' the sphere at time tl = tM the
vortex appears to follow a roughly circular path round the sphere so
that the magnitude of the y-displacement falls. To follow the motion of
the vortex for subsequent times, more grid points and smaller time steps
are necessary. However, in view of the dubious significance of the
results at this stage, this was not done.

In Fig. 7.4 three views of the side elevations at different stages
of the evolution are shown for the B = 10 case while Fig. 7.5 shows the
corresponding end elevations. The figures clearly show the rapid change
in shape of the vortex near z = O plane subsequent to time tl = tl .

The plan view is shown in Fig. 7.6.

In both B = 5.and B =10 ;ases, the overall increaselin length of
the portion of the vortex considered increased by less than 1.5%. The
vortex stretched most in the neighbourhood of £ = 0 point where, in the
B = 10 case, the distance between two points, initially a distance &z
apart, increased to 1.36z at t, = ti and to 58z at t, =ty The
corresponding values in B = 5 case were similar. Away from £ = O

points, certain portions of the vortex underwent contraction.

——
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At k= tM the kinks at £ = *A due to the truncation of the vortex
had progressed by a distance less than a down the length of the vortex
and did not affect the velocity at points on the vortex a distance less
than 5a from z = O plane.

A qualitative experiment was conducted in a'cylindrical tank of
water in which a 'bathtub vortex' waé set up at the centre. From the
edge of the tank, a sphere was moved towards the vortex at a speed
corresponding to B = 10. Dye was used for flow visualization.

The vorticity distribution in the bathtub vortex is not uniform.
However, it is expected that this will make only a quantitative
difference to the motion of the vortex.

As anticipated here the vortex does not move appreciably until the
sphere is quite close to the vortex when it commences to move in. the
sense indicated in Fig. 7.5. However, the cross stream induced by the
vortex over the sphere produces a side wake in the region into which
the vortex is starting to move. The wake appears to interact strongly
with the vortex filament which soon breaks up.

Thus the present calculations are of approximate validity in real
fluids since viscous diffﬁsion and the wake of the sphere have been

excluded in the calculations.



161

APPENDIX A: Source-vortex interaction using classical methods

The interaction between a hollow vortex and a point source in
compressible fluid has been studied by Ffowcs Williams & O'Shea (1970)..
By taking the appropriate limit, the corresponding results for
incompressible flow can be obtained from their results. However, the
boundary condition used by them at the vortex surface (the material
derivative of the pressure is required to vanish) does not facilitate
the determination of the position of the vortex surface. The incom—
pressible flow problem is therefore stated here and the solution is
written downm.

The velocity potential due to the undisturbed vortex is
s =x6 (r> o > 0) in plane polar coordinates. The flow supports a
cavity in r < N where the pressure p = 0. At t = 0, a point source is
sﬁitched on at §0 = (£,7,0) and the velocity potential (7.3.1) is
imposed on the mean flow. It is required that the pressure be

continuous across the disturbed surface,

r = ¢ = ¢yt c'(z,9,t) (A1.1)

and that the normal velocity of the disturbed surface be equal to the
normal fluid,velocity at the surface. A solution is sought where the
perturbation potential vanishes. at infinity.

Thus for r > c the perturbation velocity potential ¢ satisfies

¢
06 -
¢+ = +8,, 0 (A1.7)

-

+
¢rr

and the linearized boundary conditions which are applied at r = ¢, are

given by
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2

3% X (3 - K _ o =
(Bt)r =¢ M) (86)r=c 3¢ 0

0 ao 0 ao

(A1.3)

ac' K- 3¢' _ 3¢
ot * 2 38 B (Br)r =c

ao 0

Then, in terms of the natural functions of the vortex, c' is given by

o (-1%0% (xf)
{m]

¢'(r,0,z,t) = - -—-f Q(t-1) f cos kz %
IV &y e 00 0 n=—o Klml(kco)
- dme
x e 20 cos| L 5 BI IT] dk dt. (A1.4)
21rc0 o
where
2 ke, K '(kc ).
= - >
|m| Klml(kco)

Similarly, ¢ can be written down.

For a fixed value of z, in the coordinate frame of §3, the vortex
surface is given by the curve x = ¢ cos 8, y = ¢ sin 6 so that the

centre of the curve is at

2 | 27
f f c cos B.cde f ¢ sin 0.cdd
- 0 - 0
x(z,t) = o . y(z,t) = o . (A1.5)
[ cae [ cae
0 0
With c2 = co2 + 2c0c', substitution for c¢' gives

- 2 t o« K (kf) T r
x = J ae-7) f % K (kc )[cos( 2(1—81)T) + cos( 2(1+81)T)]COS kz dkdt
0 0 21rc0 cho
t = K (k£) r
-_2 _ . )
y == £ Q(t-1) | c K e, ylsin( 2\1 80T * sin(=—(1+8)D)Icos kz dkdt
0 21rc0 Zﬂco

(Al.6)
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From the integrand in A(1.6) it appears that, unlike the results
of §3 (cf. 7.3.7), for each wavenumber k, the contribution to the

integrand is from two modes of vibration: a co-rotational mode of

r .
frequency ( 2)(1 + Bl) and a contra-rotational mode of frequency
27e
0
( I 2)(l—Bl). This is a feature of the hollow vortex and was noted
27c
0

by Kelvin (1880). For ke, << 1, expanding By in kco gives

L)1 - B,) = L= - 3k% L(log == + .1159) + o(k*c %)}
2 1 2 0 ke 0

21e 2me 0
0 0

and (Al1.7)

(E=)(1 + 8,) = L= (2 + 3k2c2(log = + .1159) + o(k%e %)}
2 1 2 0 ke 0

2ﬂc0 cho 0

Thus the co-rotational mode is much faster than the contra-rotational
mode so that if the initial normal velocity of the displaced vortex is
small, the amplitude of the co-rotational mode will be very small
compared with that of contra-rotational mode. For kc0'<< 1, the
contra-rotational mode frequency can be identified with the frequency

of vibration given by the cut-off method. The error is 0(k4c04).
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APPENDIX B: The coefficients An in §5

,m

In the expression for the velocity contribution ES(E) in equation

(7.5.11), An,m(n) are given by
m—-k ) (-aA)m?k n=1,2,...

m! (2n-k-1)! (aa)
2n-k )Zn-k ]

2n! (m-k)! (aAiIQ(ﬂ)I)

m
A (n)= <t
m

k=0 (-ahz|R(n)|

if k.P(n) = £[P| where P(n) is as in (7.5.11). 1If [k.B(n)| # |B],

i.e. [k AP| #0,

A, (n) = L {1 a’s” - 2%’ 1 + (2m-5)k.P(n)A
L .
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1 aA + k.P aA - k.P

A, (n) = [ —_— 4 ——— + 24 ]
2,0 3|kaR(n) | % |aAkr 2| [aatr(m)|? 1O

(n) 1 |P(n)|2+aA_15.g(n) |_11|2 - aAk.P
A = -
1,1" ll_cA_P;(n)lz [TaAg + P(n)| [-aAk+P(n) | ]

I~ 1 aA+k.P(n)  aA-k.P(n)
A n) = [ + 1o ]

m=0,1,2,...
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FIGURES AND PLATES
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Fig. 3.1 'An element of a vortex layer with centroid
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Growth of waves'on a straight uniform vortex layer. Growth\rates derived

from using the governing equation with terms of (b) 0(e), (c) 0(e2), (d) o(e3)
included in the analysis are compared with Rayleigh's exact result (a).

The inset shows details of the plot for kh, small.
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Plate 6.1. Comparison between an evolving vortex ring and a
non—-evolving vortex ring.



Plate 6.2. The plan view of the evolution of an elliptic vortex

ring of axes ratio 0.4. The order of the sequence is from top to
bottom and left to right. The top left-hand frame shows the vortex
ring just forming. The major axis of the orifice is in the horizontal
direction. The film sequence was taken at 32 frames/sec.



Plate 6.3. Vortex ring in the case b/a = 0.4 at the end of third
oscillation showing short-wave instability. The sequence was
taken at 32 frames/s.



Plate 6.4. Side-view of the break-up process of the vortex ring

in the case b/a = 0.2. The order of the sequence is as in Plate 6.2,
The film sequence was taken at 32 frames/sec.



Plate 6.5. Detailed plan view of the break-up of the vortex ring
in the case b/a = 0.2,
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Figure 7.3 Track of £ = O point of the vortex in the x-y plane for B = 10.
C, and C_ are the positions of the centre of the sphere corresponding
to the positions P, and P, of the vortex. The sphere has been drawn
in these two cases while %or intermediate times only the centre of the
sphere is shown. Py is the position of the vortex at t) = ty. The
circulation of the vortex is in anti-clockwise sense.
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