911 research outputs found

    AN ESTIMATION OF LOWER TROPOSPHERIC MIXING DERIVED FROM INVERSE MODELING OF BOUNDARY LAYER WATER VAPOR ISOTOPOLOGUES ON GRACIOSA ISLAND, AZORES

    Get PDF
    Recent studies have shown water vapor isotopologues to be sensitive tracers of mixing processes that govern low-cloud feedback in climate models. In this study, we develop an inverse model (MBL Mix inverse model) that uses one year of isotope and humidity observations from Graciosa Island, Azores to estimate mixing for four seasons. We show the dry end-member of the model, the lower free troposphere (LFT), can be represented using Rayleigh fractionation. Isotope observations from Graciosa Island are compared to other field locations to discuss controls on isotopic variability other than mixing. Output from the MBL Mix inverse model shows the lowest (highest) fractions of seasonal-scale average mixing correspond to months previously observed to have the highest (lowest) occurrence of low-clouds. The model additionally shows a minimum mixing of approximately 0.3 is required to match observed data in all seasons in the Azores

    Water conservation planning: How a systems approach to irrigation promotes sustainable water use

    Get PDF
    The NRCS focuses on helping individual landowners implement conservation practices across the landscape and in targeted locations. By providing technical and financial assistance, NRCS in Arkansas is helping people help the land and move toward water sustainability in agriculture

    A Subject-Specific EMG-Driven Musculoskeletal Model for the Estimation of Moments in Ankle Plantar-Dorsiflexion Movement

    Get PDF
    In traditional rehabilitation process, ankle movement ability is only qualitatively estimated by its motion performance, however, its movement is actually achieved by the forces acting on the joints produced by muscles contraction. In this paper, the musculoskeletal model is introduced to provide a more physiologic method for quantitative muscle forces and muscle moments estimation during rehabilitation. This paper focuses on the modeling method of musculoskeletal model using electromyography (EMG) and angle signals for ankle plantar-dorsiflexion (P-DF) which is very important in gait rehabilitation and foot prosthesis control. Due to the skeletal morphology differences among people, a subject-specific geometry model is proposed to realize the estimation of muscle lengths and muscle contraction force arms. Based on the principle of forward and inverse dynamics, difference evolutionary (DE) algorithm is used to adjust individual parameters of the whole model, realizing subject-specific parameters optimization. Results from five healthy subjects show the inverse dynamics joint moments are well predicted with an average correlation coefficient of 94.21% and the normalized RMSE of 12.17%. The proposed model provides a good way to estimate muscle moments during movement tasks

    Effect of Hindlimb Unweighting on Tissue Blood Flow in the Rat

    Get PDF
    The purpose of this study was to characterize the distribution of blood flow in the rat during hindlimb unweighting (HU) and post-HU standing and exercise and examine whether the previously reported elevation in anaerobic metabolism observed with contractile activity in the atrophied soleus muscle was caused by a reduced hindlimb blood flow. After either 15 days of HU or cage control, blood flow was measured with radioactive microspheres during unweighting, normal standing, and running on a treadmill (15 m/min). In another group of control and experimental animals, blood flow was measured during preexercise (PE) treadmill standing and treadmill running (15 m/min). Soleus muscle blood flow was not different between groups during unweighting, PE standing, and running at 15 m/min. Chronic unweighting resulted in the tendency for greater blood flow to muscles composed of predominantly fast-twitch glycolytic fibers. With exercise, blood flow to visceral organs was reduced compared with PE values in the control rats, whereas flow to visceral organs in 15-day HU animals was unaltered by exercise. These higher flows to the viscera and to muscles composed of predominantly fast-twitch glycolytic fibers suggest an apparent reduction in the ability of the sympathetic nervous system to distribute cardiac output after chronic HU. In conclusion, because 15 days of HU did not affect blood flow to the soleus during exercise, the increased dependence of the atrophied soleus on anerobic energy production during contractile activity cannot be explained by a reduced muscle blood flow

    Manipulation and generation of synthetic satellite images using deep learning models

    Get PDF
    Generation and manipulation of digital images based on deep learning (DL) are receiving increasing attention for both benign and malevolent uses. As the importance of satellite imagery is increasing, DL has started being used also for the generation of synthetic satellite images. However, the direct use of techniques developed for computer vision applications is not possible, due to the different nature of satellite images. The goal of our work is to describe a number of methods to generate manipulated and synthetic satellite images. To be specific, we focus on two different types of manipulations: full image modification and local splicing. In the former case, we rely on generative adversarial networks commonly used for style transfer applications, adapting them to implement two different kinds of transfer: (i) land cover transfer, aiming at modifying the image content from vegetation to barren and vice versa and (ii) season transfer, aiming at modifying the image content from winter to summer and vice versa. With regard to local splicing, we present two different architectures. The first one uses image generative pretrained transformer and is trained on pixel sequences in order to predict pixels in semantically consistent regions identified using watershed segmentation. The second technique uses a vision transformer operating on image patches rather than on a pixel by pixel basis. We use the trained vision transformer to generate synthetic image segments and splice them into a selected region of the to-be-manipulated image. All the proposed methods generate highly realistic, synthetic, and satellite images. Among the possible applications of the proposed techniques, we mention the generation of proper datasets for the evaluation and training of tools for the analysis of satellite images. (c) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI

    Unmanned Multiple Exploratory Probe System (MEPS) for Mars observation. Volume 2: Calculations and derivations

    Get PDF
    This volume of the final report on the unmanned Multiple Exploratory Probe System (MEPS) details all calculations, derivations, and computer programs that support the information presented in the first volume

    Unmanned Multiple Exploratory Probe System (MEPS) for Mars observation. Volume 1: Trade analysis and design

    Get PDF
    This report presents the unmanned Multiple Exploratory Probe Systems (MEPS), a space vehicle designed to observe the planet Mars in preparation for manned missions. The options considered for each major element are presented as a trade analysis, and the final vehicle design is defined
    • …
    corecore