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AN ESTIMATION OF LOWER TROPOSPHERIC MIXING DERIVED FROM 

INVERSE MODELING OF BOUNDARY LAYER WATER VAPOR 
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By 

Jacquelyn Delp 

B.S., Geological Sciences, University of Florida, 2015 

ABSTRACT 

Recent studies have shown water vapor isotopologues to be sensitive tracers of 

mixing processes that govern low-cloud feedback in climate models. In this study, we 

develop an inverse model (MBL Mix inverse model) that uses one year of isotope and 

humidity observations from Graciosa Island, Azores to estimate mixing for four seasons. 

We show the dry end-member of the model, the lower free troposphere (LFT), can be 

represented using Rayleigh fractionation. Isotope observations from Graciosa Island are 

compared to other field locations to discuss controls on isotopic variability other than 

mixing. Output from the MBL Mix inverse model shows the lowest (highest) fractions of 

seasonal-scale average mixing correspond to months previously observed to have the 

highest (lowest) occurrence of low-clouds. The model additionally shows a minimum 

mixing of approximately 0.3 is required to match observed data in all seasons in the Azores.  
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1. Introduction 

1.1 Climate Modeling Uncertainty and Low-Cloud Feedback 

  As the climate changes in response to the increasing atmospheric carbon dioxide 

(CO2) concentration, a number of feedbacks will act to enhance (positive feedback) or 

reduce (negative feedback) the average global temperature increase. Equilibrium climate 

sensitivity (ECS) modeling, the modeling of the increase in the average global temperature 

associated with doubling the atmospheric CO2 concentration from pre-industrial levels, is 

a common approach for predicting future temperature change. The current spread of ECS 

generally falls between 1.5 and 4.5 K (IPCC, 2013). These estimates are reported with a 

relatively high uncertainty and a poorly constrained upper limit that has not been 

significantly improved since some of the earliest studies took place (Charney et al., 1979). 

Some feedbacks associated with climate change are well-constrained; however, others 

continue to be responsible for the uncertainty associated with ECS within an individual 

climate model as well as between different climate models (Bony and Dufresne, 2005; 

Sherwood et al., 2014). 

Low-clouds have a particularly important feedback. They are generally thick, have 

a relatively broad extent and high albedo, and emit thermal radiation at temperatures close 

to the surface, allowing them to reflect a larger portion of incoming shortwave radiation 

than the longwave radiation they trap (Hartmann and Short, 1980; Bony and Dufresne, 

2005; Barry and Chorley, 2010). These characteristics allow low-clouds to facilitate a net 

cooling effect on surface temperatures under current climate conditions.  

In 2005, one study attributed a large source of uncertainty between climate models 

to differences in how they simulated the radiative effects of tropical low-clouds (Bony and 
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Dufresne, 2005). In 2012, another study reported the increase in upward force from 

increased ocean evaporation associated with climate change would drive a deeper, less 

moist near-surface atmosphere, resulting in less low-cloud cover and a positive feedback 

(Rieck et al., 2012). Sherwood et al. (2014) used output from 43 climate models to attribute 

50% of the uncertainty in these models to differences in their simulated strength of the 

large- and small-scale convective mixing processes that govern low-cloud formation. This 

study demonstrated more mixing results in a decrease in the relative humidity of the marine 

boundary layer (MBL) and an increase in the relative humidity of the lower free 

troposphere (LFT), where low-cloud feedback was determined to be positive. These studies 

illustrate the importance of better understanding mixing between the MBL and LFT in 

order to better represent this process in climate models, simulate its influence on low-

clouds, and produce more constrained estimates of likely future temperature conditions.  

1.2 Atmospheric Hydrologic Studies and Water Vapor Isotopologues 

Isotopes have been used in hydrologic studies since the mid-1950s (Dansgaard, 

1954). Hydrogen has two naturally occurring stable isotopes (1H and 2H; 2H is also referred 

to as D) and Oxygen has three naturally occurring stable isotopes (16O, 17O, and 18O). The 

lightest isotopes are the most abundant, so most water molecules are comprised of the 

lightest isotopes of Hydrogen and Oxygen, 1H2
16O (99.73098%). However, water 

molecules comprised of the heavier, rarer isotopes of Hydrogen and Oxygen, 1H2
18O, 

1H2
17O, and 1HD16O, still occur at measurable quantities (Sharp, 2006).   

The physical basis for using water isotopologues in hydrologic studies stems from 

the mass-dependent fractionation that takes place during phase change throughout the 

hydrologic cycle. Water molecules with heavier Oxygen or Hydrogen isotopes have greater 
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masses than those only composed of lighter isotopes, which causes them to have greater 

binding energies and lower diffusive velocities. Because evaporation and condensation are 

mass-dependent processes, phase change that occurs throughout the hydrologic cycle 

influences the isotopic composition of water vapor through the process of fractionation, 

and the resulting composition can provide unique information regarding atmospheric 

processes. Water molecules with heavier isotopes evaporate less readily and condense 

more readily compared to water molecules with light isotopes (Galewsky et al., 2016; 

Sharp, 2006). 

Water vapor isotopologue compositions are reported as a ratio (R) of the 

concentration of the heavy isotope to the light isotope. This ratio is expressed relative to 

an international standard, the International Atomic Energy Agency (IAEA) Vienna 

Standard Mean Ocean Water (VSMOW), in the delta (δ) notation (McKinney et al., 1950) 

in units of per mil (‰) as expressed by Equation 1.1, where Rsample is the ratio of the 

sample and RVSMOW is the ratio of the standard. Studies generally focus on two isotopes 

of water vapor, δD and δ18O, as well as the deuterium excess parameter, d-excess 

(Dansdaard, 1964). d-excess is calculated from the two isotopes, as expressed by Equation 

1.2 (Craig, 1961). δD and δ18O values that are less negative mean the sample is relatively 

enriched in the heavy isotope, while samples that are more negative are relatively depleted 

in the heavy isotope. d-excess is the result of a variety of kinetic processes that take place 

during the hydrologic cycle. Atmospheric water vapor δD, δ18O, and d-excess 

measurements can provide useful information regarding the atmospheric hydrologic cycle 

by constraining the relative roles of phase change, transport, and mixing that are difficult 

to observe using humidity measurements alone (Galewsky et al., 2016).  
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𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟏. 𝟏                                                                    δ =
𝑅𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑅𝑉𝑆𝑀𝑂𝑊

𝑅𝑉𝑆𝑀𝑂𝑊
 ·  1000 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟏. 𝟐                                                                                 δD = 8 · δ18O + d − excess 
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2. Background 

2.1 Importance of Modeling Processes Controlling Water Vapor 

Isotopologues 

Ocean evaporation is a critical component of the hydrologic cycle, due to moisture 

in the atmosphere originally being sourced from ocean evaporative flux.  Because of this, 

some of the initial studies using water isotopologues put much effort into understanding 

the physical processes that control the δ value of water vapor evaporating from the ocean. 

The original model describing the δ values of water vapor evaporating from a water body 

was the Craig and Gordon Model (Craig and Gordon, 1965; described in Section 2.1.1), 

which was later simplified by Merlivat and Jouzel (Merlivat and Jouzel 1979; described in 

Section 2.1.1). More recent studies have used a combination of these previous models 

along with their own adaptations to better represent the δ values of MBL water vapor 

measurements by representing mixing between the ocean evaporative flux and the LFT 

(Benetti et al., 2015, Benetti et al., 2018; described in Section 2.1.2).  

2.1.1 The Craig and Gordon Model 

 The first comprehensive study of MBL water vapor isotopologues and their relation 

to evaporation and mixing was completed by Craig and Gordon (1965). This study used 

measurements from multiple ocean regions to show water vapor was more isotopically 

depleted than vapor in equilibrium with the sea surface. It demonstrated a strong correlation 

between isotopic composition and relative humidity (RH) calculated relative to saturation 

vapor pressure at sea surface temperature (SST). These observations were used to develop 

a three-layer model, where Layer 1 represented a liquid surface where condensation and 

evaporation occur, Layer 2 represented a laminar layer where molecular diffusion 
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dominates molecular transport rates, and Layer 3 was a turbulent layer where eddy 

diffusion and turbulent transport are the dominant processes. Processes taking place 

between layers were numerically represented with the Craig and Gordon Model, which 

calculates the δ value of evaporated vapor using the δ value of the liquid and surrounding 

free atmosphere, equilibrium fractionation at the vapor-liquid surface, RH normalized to 

saturation vapor pressure at the SST, deviation from equilibrium fractionation, and total 

kinetic isotopic effects derived from transport between the three layers.  

 The Craig and Gordon Model was later simplified by Merlivat and Jouzel (1979) 

where a parameter, k, was used to prescribe all kinetic effects by categorizing measurement 

conditions into a smooth (less than 6 or 7 m/s) or a rough (greater than 6 or 7 m/s) wind 

regime. Stronger fractionation is associated with the smooth wind regime. This study also 

proposed the closure assumption, further simplifying the Craig and Gordon Model by 

setting the δ value of the evaporative flux equal to that of the entire MBL water vapor. This 

assumption refers to a closed water budget, where all vapor in the MBL is reasoned to be 

sourced from local evaporative flux, neglecting input from the LFT.  

By using the closure assumption, MBL d-excess observations have successfully 

been reproduced (Benetti et al., 2014). However, the closure assumption predicts MBL δ 

values that are less isotopically depleted than observations (Benetti et al., 2014; Jouzel and 

Koster, 1996; and Kurita, 2013). This can be explained by contribution to the MBL from a 

depleted air mass, such as the LFT. As altitude increases, water vapor becomes more 

isotopically depleted (Sharp, 2006), but d-excess remains relatively constant between the 

surface and mid-troposphere (Bony et al., 2008). This means mixing of LFT air into the 

MBL would not influence d-excess of the MBL while making MBL δ values more 
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isotopically depleted, which is consistent with the above described observations. By 

releasing the closure assumption, modeling of MBL δ values may potentially be used as 

tracers of mixing between ocean evaporation and the LFT (Benetti et al., 2018).  

2.1.2 The MBL Mix Forward Model 

  Benetti et al. (2015 and 2018) investigated the controls of evaporation and mixing 

on MBL δ values. They introduced a simple forward model that simulates MBL isotopic 

ratio as a result of mixing between a moist and dry end-member, where the moist end-

member is represented by enriched ocean evaporative flux and the dry end-member is 

represented by depleted water vapor from the LFT. This results in a mixing curve that 

intersects observations of MBL water vapor isotopologues measured under stable 

atmospheric conditions.  

The simplified mixing process is represented by Equation 2.1, where RMBL is the 

isotopic ratio of the MBL, Re is the isotopic ratio of evaporative flux from the ocean, RLFT 

is the isotopic ratio of the LFT, and r is the LFT ratio (also referred to as LFT mixing 

hereafter). The LFT mixing represents the fraction of LFT moisture mixed into the MBL, 

as defined by Equation 2.2, where qLFT is the specific humidity of the LFT and qe is the 

specific humidity of the evaporative flux. Because the specific humidity of the MBL, 

qMBL, is the result of mixing between the moist qe and dryer qLFT, qMBL is defined as 

the sum of fluxes from these parameters and r is equal to qLFT/qMBL.  

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟏                                                                        𝑅𝑀𝐵𝐿 = (1 − 𝑟) · 𝑅𝑒 + 𝑟 · 𝑅𝐿𝐹𝑇 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟐                                                                                        𝑟 =
𝑞𝐿𝐹𝑇

𝑞𝑒 + 𝑞𝐿𝐹𝑇
=

𝑞𝐿𝐹𝑇

𝑞𝑀𝐵𝐿
 

In Equation 2.1, Re is defined using the above described Craig and Gordon Model, 

shown in Equation 2.3. RSW is equal to the isotopic ratio of the ocean surface, αeq is the 
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temperature-dependent equilibrium fractionation factor, RHS is the relative humidity 

normalized to SST, and αk represents the kinetic fractionation factor. Because Re is a 

calculated parameter that includes the unknown parameter RMBL, Equation 2.1 & 2.3 are 

combined and the resulting formula can be rewritten as Equation 2.4, where all known 

values are on the right side and the unknown RMBL is only on the left.  

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟑                                                                                𝑅𝑒 =

𝑅𝑆𝑊
αeq

− (𝑅𝐻𝑆 · 𝑅𝑀𝐵𝐿)

αk · (1 − RHS)
 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟒                                    𝑅𝑀𝐵𝐿 =

(1 − 𝑟) · 𝑅𝑆𝑊
αeq

+ 𝑟 · αk · (1 − 𝑅𝐻𝑆) · RLFT

(1 − r) · RHS +  αk · (1 − RHS)
 

 

 In the next step of the MBL Mix forward model, the LFT mixing is temporarily set 

equal to 0, briefly introducing the closure assumption to calculate the isotopic ratio of 

evaporative flux from the ocean. This allows the isotopic ratio of the evaporative flux to 

be iteratively calculated along a single MBL Mix curve based on changes in the specific 

humidity along the MBL Mix curve while still considering changes in the extent of mixing 

with the LFT. This iterative calculation allows the model to simulate a dynamic evaporative 

flux (a different isotopic ratio of the evaporative flux for each point along the mixing 

curve), which is shown by Benetti et al. (2018) to be a necessary step to better represent 

water vapor isotopologue observations than modeling exclusively with the closure 

assumption or by using a simple mass balance mixing model that does not consider a 

dynamic evaporative flux (Gedzelman, 1988; Galewsky and Hurley, 2010; Benetti et al. 

2018). The calculation of the isotopic ratio of the evaporative flux with the closure 

assumption, listed below as RMJ79, is shown with Equation 2.5. Finally, by reorganizing 
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Equation 2.4 as a function of RMJ79, Equation 2.6 is obtained, which includes the 

parameter b, shown in Equation 2.7. In the last step of the calculation, the closure 

assumption is released, and the LFT ratio is no longer set equal to 0, allowing mixing to 

take place between RMJ79 and RLFT to represent conditions in the MBL. 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟓                       𝑅𝑀𝐵𝐿 (𝑤ℎ𝑒𝑟𝑒 𝑟 = 0) = 𝑅𝑀𝐽79 =

𝑅𝑆𝑊
αeq

RHS +  αk · (1 − RHS)
 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟔                                                               𝑅𝑀𝐵𝐿 = (1 − 𝑏) · 𝑅𝑀𝐽79 + 𝑏 · 𝑅𝐿𝐹𝑇 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟕                                                                  𝑏 =
𝑟 · αk · (1 − 𝑅𝐻𝑆)

(1 − r) · RHS +  αk · (1 − RHS)
 

 

 There are two limitations of the MBL Mix model addressed in Benetti et al. (2015). 

(1) The model neglects horizontal advection. The authors of the 2015 study state that, in 

an oceanic setting, water vapor advected to a study location is the result of previous vertical 

mixing between ocean evaporative flux and the LFT in adjacent areas, meaning LFT water 

vapor is not necessarily from the LFT located directly above the study location. Because 

of this, water vapor from horizontal advection may experience different physical conditions 

(SST, atmospheric temperature, and wind) than those that are locally observed. However, 

the authors argue that on daily and longer timescales, regional conditions are relatively 

homogenous, meaning water vapor isotopologue changes associated with horizontal 

advection are small compared to those associated with vertical mixing. (2) The model 

considers instantaneous mixing, neglecting the residence time of water vapor within the 

MBL, assuming near surface water vapor is at a steady state. Despite these limitations, the 

MBL Mix model has initially demonstrated success reproducing the isotopic variability of 

MBL water vapor through accounting for vertical mixing and a dynamic evaporative flux 



10 
 

(Benetti et al., 2018). This means it can potentially be used with isotope and humidity 

observations to study, better understand, and improve simulation of the mixing dynamics 

that govern low-cloud feedback in climate models. In this paper, we argue an additional 

limitation of the MBL Mix forward model is that it does not offer a constrained estimate 

of LFT mixing that represents MBL isotope observations that lie along an MBL Mix curve; 

this study aims to improve this limitation (discussed in Section 3.2).  

2.2 Study Area 

This study uses one year of in-situ water vapor isotopologue measurements 

collected at the Department of Energy (DOE) Atmospheric Radiation Measurement 

(ARM) facility located on Graciosa Island, Azores. The Azores are a group of volcanic 

islands located at the triple junction of the North American, African, and Eurasian tectonic 

plates. Graciosa Island is the northernmost island within the central group of the Azores 

archipelago, located at approximately 39.1° North latitude and 28° West longitude. Low-

clouds have an especially strong feedback over the ocean and previous studies have 

primarily focused on low-clouds in the subtropics. This means the Azores location in the 

transition between subtropical and midlatitude oceanic areas represents an opportunity to 

study the connection between water vapor isotopologues and mixing processes that 

determine low-cloud feedback in an underrepresented setting with different seasonal 

dynamics. Between September and March, this region is frequently crossed by the North 

Atlantic storm track and from late spring to summer the climate is influenced by the Azores 

anticyclone (Santos et al., 2004). The DOE ARM facility located on Graciosa Island 

presents the opportunity to complement water vapor isotopologue measurements to 

instruments capable of measuring changing atmospheric conditions. The position of the 
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DOE ARM facility on Graciosa Island is upwind from the climatologically prevailing 

winds and was chosen to reduce the island’s effect on atmospheric measurements 

(Rémillard et al., 2012).  

Although most studies focused on low-clouds have taken place in the subtropics, 

there has been some previous work focused on MBL clouds in the Azores.  Rémillard et 

al. (2012) reported a 19-month long field campaign between June 2009 and December 2010 

at the DOE ARM facility on Graciosa Island, which was the most extensive and 

comprehensive dataset of MBL clouds at the time. Wood et al. (2015) reported that the 

Azores position in the transition between the subtropical and midlatitude dynamic regimes 

makes this location particularly useful for observing cloud changes in dynamical transitions 

and testing the ability of models ranging from cloud-resolving to global climate models 

(GCMs) to simulate cloud changes.  
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3. Purpose of Study  

3.1 Describe MBL δ Variability on Graciosa Island, Azores 

 This study involved a one-year deployment to collect water vapor humidity and δ 

data from Graciosa Island, Azores.  We introduce the time series of these measurements 

and describe seasonal variability. We show observations of d-excess are generally well 

estimated by the closure assumption, but δD and δ18O are better represented by a model 

that consider mixing of LFT; we show MBL Mix has better success consistently estimating 

observations of δD, δ18O, and d-excess compared to a simple mixing model that does not 

consider a dynamic evaporative flux (Gedzelman, 1988). Measurements from the Azores 

are additionally compared to observations from water vapor isotopic studies set in other 

ocean regimes.  

3.2 Introduce MBL Mix Inverse Model 

 This study shows MBL Mix is the most recent model developed that consistently 

best fits MBL observations from the Azores. Because of this, we chose this forward model 

to adapt into an inverse model. While the forward model uses measurements of parameters 

controlling MBL δ to generate a mixing curve that intersects observations of humidity and 

δ values, the inverse model uses observed humidity and δ values to estimate LFT mixing 

necessary to reproduce observations. It does this by pairing a stochastic forward model to 

a genetic algorithm which generates a best-fit solution of controlling parameters that can 

be used to create synthetic data points that match observations. Each synthetic data point 

has a known LFT mixing value which is used to represent the LFT mixing conditions of 

the observed data. This adaptation of MBL Mix from a forward model into an inverse 
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model advances the capabilities of this model by setting it up to provide a constrained 

estimate of LFT mixing.  

3.3 Represent LFT Using Rayleigh Fractionation 

 Measurements for this study were limited to near-surface in-situ observations, 

meaning δ values in the LFT were not directly measured. Many studies do not have 

available instrumentation or resources to record observations in multiple locations 

simultaneously. In this study, we seek the simplest modelling approach that can still 

reproduce MBL δ values by using the Rayleigh model of isotopic depletion (Dansgaard, 

1964). This method provides an innovative approach to constrain the LFT for isotopic 

studies because a Rayleigh fractionation curve is generated using tools that would 

commonly be available at a wide variety of study locations and this approach allows LFT 

isotopic characteristics to be constrained without direct measurement. 

3.4 Estimate Seasonal-Scale LFT Mixing on Graciosa Island, Azores  

 Observations in the Azores were used with the MBL Mix inverse model to estimate 

LFT mixing for four seasons. We organize observations into March-April-May (MAM, 

Spring 2018), June-July-August (JJA, Summer 2018), September-October-November 

(SON, Fall 2018), and December-January-February (DJF, Winter 2018-2019). Each season 

of humidity and δ observations are inversely modeled to develop distributions of each 

model-solved parameter, including LFT mixing. We compare LFT mixing between 

seasons to changes in seasonal atmospheric conditions as well as results from previous 

work (Rémillard et al., 2012) focused on low-cloud observations at the study area. By doing 

so, we demonstrate water vapor isotopologue and humidity measurement can be used 
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together to constrain the mixing processes that govern low-cloud formation and feedback 

that would be difficult to estimate only using humidity.  
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4. Methods 

 This study includes one year of water vapor isotopologue measurements from 

Graciosa Island, Azores. In this section, we go over the isotope analyzer set-up (Section 

4.1), data processing techniques (Section 4.2), instruments other than the isotope analyzer 

that were used in this study (Section 4.3), sensitivities of the MBL Mix forward model 

(Section 4.4), and how the MBL Mix inverse model was designed (Section 4.5).  

4.1 Isotope Analyzer Set-Up 

Water vapor isotopologue and humidity measurements were determined using a 

Los Gatos Research (LGR) Triple Water Vapor Isotope Analyzer (TWVIA). This 

instrument was deployed from March 2018 through February 2019 at the DOE ARM 

facility located on Graciosa Island, where it was housed in a shipping container. The 

instrument was connected to an uninterruptable power supply and consists of three main 

components: a water vapor isotope analyzer, calibration unit, and dry air source.  

Ambient air samples were collected through an inlet located several meters above 

the shipping container. Samples were then delivered to the analyzer through tubing by use 

of an external pump to optimize the transport time between the inlet and analyzer. The 

tubing within the shipping container was surrounded by a heating cable and insulating 

material to ensure ambient air samples did not fall below the dew point and result in 

condensation. The analyzer uses laser-based off-axis integrated cavity output spectroscopy 

to report isotopic ratios of ambient air samples in 10-second averages. The calibration unit 

of the instrument was used in conjunction with the dry air source to periodically measure 

the δ values of standard waters.  It uses a nebulizer to push small water droplets into a hot 
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chamber that vaporizes the water without fractionation. This vapor was then transported to 

the analyzer using a built-in compressor and the dry air source, which allows each standard 

with known δ values to be measured at a wide range of humidity values for post-

measurement calibration of ambient air samples. 

4.2 Data Processing 

Multiple data processing steps were taken to account for humidity-induced bias, 

calibration to international standards, time drift in the δ values of standard waters, and 

independent verification of the analyzer’s humidity measurements (Galewsky et al., 2016).  

4.2.1 Humidity-Induced Bias Correction 

A well-documented source of measurement bias is caused by the tendency of the 

analyzer to report isotope ratios as a function of humidity (Lis et al., 2008; Johnson et al., 

2011). This relationship is generally found to be non-linear and unique to the individual 

isotope analyzer, the isotope ratio measured, and the humidity at which measurements are 

recorded (Lis et al., 2008; Bailey et al., 2015). Correcting for humidity-induced bias is 

highly important, as not doing so may lead to d-excess bias greater than 25‰ (Sturm and 

Knohl, 2010).  

Three secondary standards (Deionized Water, Greenland Meltwater, and South 

Pole Meltwater) with a broad span of δ values were deployed with the analyzer on Graciosa 

Island. Standards were run throughout the instrument’s deployment at approximately 20-

hour intervals, each of which included multiple periods of standard injections measured at 

mixing ratios spanning the range of local ambient humidity. Resulting measurements from 

Deionized Water were used to correct for the instrument’s humidity-dependence by 
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generating three-dimensional surface fits for δD and δ18O. The standard Deionized Water 

was chosen to generate this fit because its δ values were closer to ambient air δ values 

observed on Graciosa Island than the remaining secondary standards. The humidity-

dependent surface fits plot bias (bias =  known δ – measured δ) as a function of mixing 

ratio and the time the standard was run (Figure 4.1), which corrects for humidity-induced 

bias as well as time drift in the analyzer’s humidity-induced bias. 

 

4.2.2 Calibration to International Standards 

 After correcting for humidity-induced bias, the isotope observations must be 

calibrated to the international Vienna Standard Mean Ocean Water – Standard Light 

Antarctic Precipitation (VSMOW-SLAP) scale. This was accomplished by using 
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measurements from all three standard waters to generate surface fits for δD and δ18O 

plotting the known δ value as a function of the humidity corrected δ value and the time at 

which the standard water was measured (Figure 4.2). By incorporating time in the surface 

fits, long-term variability in the instrumental VSMOW-SLAP scale could be accounted for 

in the calibration of ambient air observations (Steen-Larsen et al., 2014).  

 

4.2.3 Standard Water Isotopic Composition Time Drift 

 Time drift in the δ values of standard waters was monitored throughout the 

analyzer’s deployment. Some degree of change was expected due to fractionation 

associated with partial evaporation occurring during periodic opening and closing of 

standard water storage containers and bubbling of air into the water during the purge cycle 
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of the calibration unit during standard water injections. Changes in the isotopic 

composition of standard waters was mitigated by storing waters in large volumes, 

decreasing the overall effect of fractionation. Standard waters were measured periodically 

throughout the field deployment and recorded changes were found to be within analytical 

uncertainty. Because of this, an average value was calculated for each standard’s δ values 

(Table 4.1) and the average was used for the above described  humidity-induced bias 

correction and VSMOW-SLAP calibration.  

 

4.2.4 Independent Verification of Humidity 

 The isotope analyzer’s humidity measurements are compared to those recorded by 

the DOE ARM facility’s meteorological station (met station). The isotope analyzer reports 

humidity in mixing ratio using units of parts per million (ppm) while the ARM met station 

records relative humidity, pressure, and temperature, which is converted to mixing ratio 

for comparison. During the field deployment, there was an average percent difference 

between the met station mixing ratio and the analyzer’s mixing ratio of 3.8%.  



20 
 

4.3 Additional Instruments  

 The isotope analyzer’s humidity and water vapor isotopologue measurements were 

paired with a variety of instruments located at the DOE ARM facility on Graciosa Island 

as well as National Oceanic and Atmospheric Administration (NOAA) satellite data. 

Because many instruments recorded at different time intervals, measurements were paired 

with the isotope observations through interpolation followed by time averaging all 

measurements. This study uses 3-hour averages. The purpose of pairing all instruments 

was to independently verify the humidity observations of the isotope analyzer (as described 

in Section 4.2.4) and document the changing environmental conditions that may be 

influencing the isotope and humidity observations for modeling purposes.  

 The DOE ARM facility on Graciosa Island launched twice-daily weather balloon 

soundings using Vaisala instrumentation that measured the vertical profile of the 

atmosphere’s thermodynamic state as well as wind speed and direction. This study uses 

weather balloon sounding pressure, temperature, and relative humidity measurements.  

 The met station located at the DOE ARM facility has a variety of sensors that record 

atmospheric pressure, temperature, relative humidity, vapor pressure, precipitation rate, 

vector-averaged wind speed, and vector-averaged wind direction. These measurements are 

recorded in one-minute averages and have associated uncertainties of 0.1 kPa, 0.1 °C, 0.1 

%, 0.1 kPa, 0.01 mm/hour, 0.1 m/second, and 1°, respectively.  

This study uses NOAA’s Earth System Research Lab Physical Science Division 

optimum interpolation satellite SST data (NOAA High Resolution SST). This product also 

uses data from ships and buoys and includes large-scale adjustment of satellite data with 
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respect to the in-situ data (Reynolds et al., 2007) Observations are recorded as daily 

averages on a 0.25° latitude by 0.25° longitude global grid.  

4.4 MBL Mix Forward Model Sensitivity Tests 

Before setting up the MBL Mix inverse model and attempting to fit isotope and 

humidity observations from the Azores with inverse model output, this study explores the 

sensitivity of the MBL Mix forward model to input parameters. This is done by perturbing 

each of the individual input parameters while holding all others constant to a reference 

case. The input parameters for the MBL Mix forward model include: LFT specific 

humidity, LFT δD and δ18O, SST, ocean surface δD and δ18O, kinetic fractionation factors 

for δD and δ18O, and surface pressure. These tests revealed the MBL Mix forward model 

is particularly sensitive to changes in the LFT and SST.  

 Figure 4.3 illustrates the forward model’s response to changes in the humidity and 

δ values of the LFT. Although changes in the LFT δ values primarily influence the slope 

of less moist half of the curve, changes to the LFT specific humidity have a large effect on 

the slope of the entire MBL Mix forward model curve. LFT specific humidity is 

additionally highly influential in the calculation of LFT mixing (r, Equation 2.2) because 

it appears in both the numerator and denominator of this ratio. Because this study does not 

include direct measurements of the LFT characteristics, the dry endmember is estimated 

using the Rayleigh model of isotopic depletion (discussed further in Section 4.5.1).  
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 Figure 4.4 illustrates the forward model’s response to changes in SST. Changes to 

this parameter primarily influence the more humid half of the mixing curve because of its 

effect on the maximum specific humidity at which water vapor can evaporate from the 

ocean surface. Like changes to the LFT specific humidity, this also has an influence on r. 

To a lesser extent, there is an effect on the MBL δ values. This is due to the use of SST to 

calculate the temperature-dependent equilibrium fractionation factor which is used to 

determine the δ values of ocean evaporative flux. It is also due to the use of SST to calculate 

relative humidity normalized to SST, which contributes to determining MBL δ values after 

mixing between the LFT and evaporative flux. Due to the sensitivity of the MBL Mix 

model to this parameter, this study splits the one year of observations from Graciosa Island 

into four seasons for individual analysis using the MBL Mix inverse model. By doing so, 

this allows the inverse model to use a more limited range of SST per season to generate 

synthetic points to match the observations.  
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4.5 MBL Mix Inverse Model Set-Up 

 This study seeks the simplest inverse model set-up that can reproduce observed 

humidity and δ value trends in the MBL. Input parameters are constrained using a variety 

of methods described in Section 4.5.1 and the inverse model is generated by use of a 

genetic algorithm described in Section 4.5.2. Each model unknown is given an upper and 

lower bound that the genetic algorithm uses to converge on an optimal solution within the 

specified range for that model parameter.  

4.5.1 Constrain Input Parameters 

 LFT characteristics are not directly measured during this study and are instead 

constrained using the Rayleigh model of isotopic depletion (Dansgaard, 1964). This 

framework considers the idealized progressive effects of fractionation on a precipitating 

air parcel, where water vapor that condenses is immediately removed from the system. This 

leads to a dry and isotopically depleted air mass, which can be used to represent the LFT. 

In order to calculate a Rayleigh fractionation curve, we use the twice-daily weather balloon 

soundings to calculate an average temperature profile for each season. The average 

temperature profile is used to calculate a vertical profile of temperature-dependent 

equilibrium fractionation factors. Because initial delta values are unknown, we allow the 

genetic algorithm to solve for a beta distribution of initial delta values that includes range 

of observed δ values on Graciosa Island. We additionally allow the genetic algorithm to 

solve for a beta distribution of lifting condensation levels in the atmosphere, which controls 

the humidity and equilibrium fractionation factor at which Rayleigh fractionation begins 

from the initial delta value. This generates a Rayleigh curve, from which the inverse model 

selects a best-fitting point to represent the LFT specific humidity and δ values.  
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 SST is constrained using NOAA satellite data. We use daily averages from latitude 

ranges 38.5° to 39.25° North and longitude ranges 27° to 29° West to index the ocean 

region surrounding Graciosa Island. Observations are used to generate a normal 

distribution for the inverse model. Ocean surface δ values were also not directly measured 

during this period. We constrain ocean surface δD and δ18O with data collected from 

cruises between 2012 and 2015 (Benetti et al., 2017) by using the range of observed values 

to set upper and lower bounds for the inverse model to solve for a beta distribution within.  

 The final input parameters to constrain include surface pressure and the kinetic 

fractionation factors for δD and δ18O. This study uses averaged surface pressure 

observations collected by the met station at the DOE ARM facility. This study uses a 

calculation of the kinetic fraction factors consistent with Benetti et al. (2015), where 

fractionation is dependent on a smooth or rough wind speed regime (Merlivat and Jouzel, 

1979). The average wind speed for each season fell within the smooth regime (kinetic 

fractionation factor for δD = 1.0053 and δ18O = 1.0006), which was input to the inverse 

model.  

4.5.2 Optimization Algorithm 

A genetic algorithm is an optimization algorithm that uses concepts from 

evolutionary biology (Beasley et al. 1993a,b). This study uses MATLAB’s genetic 

algorithm function to solve for an optimized combination of unknown parameters (LFT 

specific humidity and δ values, Ocean surface δ values, LFT mixing, and Rayleigh 

fractionation’s initial δ values and lifting condensation level) that can be used to generate 

synthetic data points that best match observational data points. The genetic algorithm 

creates an initial generation of individual potential solutions, each of which has an 
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associated error. The genetic algorithm then uses those potential solutions as parents to 

produce new potential solutions as children for the next generation by implementing 

selection, crossover, and mutation. This is done iteratively until the genetic algorithm 

converges on the solution with the lowest error; this is the solution that generates synthetic 

data points that best match observed data points. Previous success with this method has 

been shown by Galewsky and Rabanus (2016), where inverse modeling of water vapor 

isotopologues with a genetic algorithm was successfully used to constrain last saturation 

and mixing parameters that govern subtropical humidity, and by Galewsky (2018), where 

inverse modeling with a genetic algorithm was used to demonstrate the first link between 

lower-tropospheric mixing, low-clouds, and isotope-derived mixing estimates.  

Within the genetic algorithm, error is evaluated using a two-dimensional 

Kolmogorov-Smirnov test (referred to as K-S statistic; Peacock, 1983). This is a method 

which calculates error by using the largest absolute difference in the cumulative probability 

distributions between the synthetic and observed data’s humidity and δ values. Each season 

of observed data was evaluated with the MBL Mix inverse model multiple times using 

standardized conditions, to determine which model set-up yielded the lowest K-S statistic 

error. The standardized conditions used to determine best-fit conditions include adjusting 

both the population size of each generation of the genetic algorithm (we evaluated model 

error using population sizes of 2000 and 3000) as well as the upper bound of the alpha and 

beta values used to generate the beta distribution of each parameter optimized by the 

genetic algorithm (we evaluate model error using alpha and beta value upper bounds of 25, 

50, and 100). The combination of population as well as alpha and beta value adjustments 
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that yielded the output with the lowest error for each season was selected to present as the 

results of this study.  
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5. Results 

5.1 Observations from Graciosa Island 

3-hour averaged humidity and isotope observations from the 12-month 

measurement period are illustrated on Figure 5.1 (panels a – d). These measurements are 

organized on Table 5.1 using the mean and standard deviation for the entire data set (One 

Year 2018 - 2019) as well as the individual seasons (MAM 2018, JJA 2018, SON 2018, 

and DJF 2018 – 2019). There are four sources of uncertainty introduced at different stages 

during the data collection and processing. These include (1) instrument precision, (2) 

uncertainty in the secondary standards, (3) humidity-correction uncertainty, and (4) 

VSMOW-SLAP calibration uncertainty. Uncertainty from each step is propagated in 

quadrature to calculate a total uncertainty of each isotopologue. Uncertainty was 

determined to be 1.8‰ for δD and 0.95‰ for δ18O. 

 The annual averages for δD and δ18O were -87.7‰ and -12.98‰, respectively. δD 

ranged between -156.4‰ and -67.5‰, and δ18O ranged between -20.93‰ and -8.49‰.  On 

the seasonal scale, JJA had the highest average MBL δ value (-84.1‰) while DJF had the 

lowest (-94.9‰).  The highest variability (standard deviation) in MBL δ values was 

observed in DJF for both δD (13.5‰) and δ18O (2.03‰), while the least variability in δD 

was observed in SON (7.9‰) and least variability in δ18O was observed in JJA (1.40‰). 

The annual average for d-excess was 16.1‰ with a standard deviation of 8.1‰. d-excess 

ranged between -19.5‰ and 41.0‰ during the deployment period. On the seasonal scale, 

average MBL d-excess was observed to be highest (18.8‰) and the least variable (1.7‰) 

during DJF and the lowest (13.1‰) during JJA with moderate variability (5.2‰). MAM 
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and SON had d-excess averages and standard deviations similar to that of the annual scale. 

The annual average and standard deviation of MBL specific humidity was 10.2 g/kg and 

3.0 g/kg, respectively. MBL specific humidity ranged between 4.5 g/kg and 17.3 g/kg 

during the study period. On the seasonal scale, JJA had the highest average MBL specific 

humidity (12.7 g/kg) while MAM had the lowest (8.0 g/kg), which was closely followed 

by DJF (8.2 g/kg). DJF had the least variability of MBL specific humidity (1.7 g/kg) while 

SON had the most (2.8 g/kg).  

 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 



32 
 

 NOAA SST observations from the measurement period are illustrated on Figure 

5.1 (panel e) and reported on Table 5.2 using the mean and standard deviation for the entire 

year and each season. The annual average SST was 19.7°C and the standard deviation was 

2.9°C. During the study period, SST ranged between 15.7°C and 25.7°C. On the seasonal 

scale, average SST was observed to be warmer than the annual average in JJA (22.4°C) 

and SON (21.3°C), but colder than average in MAM (17.0°C) and DJF (16.8°C). SON had 

the most variability in SST (2.0°C) while DJF had the least (0.3°C).  

  

 

 

 

 

 

 

Humidity and isotope observations from each season are plotted with the closure 

assumption, a simple mixing model with a constant δ of evaporative flux (Gedzelman, 

1988; Galewsky and Hurley, 2010), and MBL Mix to test which model consistently best 

represents MBL δ characteristics (Figures 5.2 through 5.4). To calculate the closure 

assumption line, we use humidity observations from the isotope analyzer deployed on 

Graciosa Island, ocean surface isotope observations from Benetti et al. (2017), seasonally 

averaged NOAA SST observations from the Azores region, and kinetic fractionation 
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factors for δD and δ18O from Benetti et al. (2015).  To generate the simple mixing model 

and MBL Mix, we use output from the closure assumption and represent the LFT using 

midlatitude δD, δ18O, and humidity climatology’s developed in Benetti et al. (2018). We 

find the closure assumption overpredicts MBL δD and δ18O for every season, but generally 

well represents d-excess values in every season, which is consistent with the findings of 

Benetti et al. (2014). The simple mixing model succeeds in representing δD, but 

overestimates δ18O and underestimates d-excess. In agreement with Benetti et al. (2018), 

we find MBL Mix generally best represents δD, δ18O, and d-excess for all seasons, 

reflecting the importance of considering a dynamic evaporative flux and LFT mixing in 

modeling the isotopic characteristics of MBL water vapor in an oceanic setting 

transitioning between the subtropics and midlatitudes.  

 

 

 

 

 

 

 

 

 

 



34 
 

 



35 
 

 



36 
 

 



37 
 

5.2 MBL Mix Inverse Model Calculations 

The purpose of the MBL Mix inverse model is to find an optimal solution capable 

of recreating observed trends in the relationship between the MBL specific humidity and δ 

values in order to estimate LFT mixing. This study uses three-hour averaged data from 

Graciosa Island to match synthetic data to observations. In order to reduce the island’s 

effect on observed specific humidity and δ values, we neglect data collected when wind 

direction was from the southeast to southwest. This reduces the effect of using observations 

in the model that have recorded fractionation from the island’s topography and better 

represents MBL conditions over the ocean.  The ability of the inverse model to match 

observed trends is demonstrated by Figures 5.5 through 5.7. The goodness of fit for δD, 

δ18O, and d-excess between synthetic and observed data is evaluated using a Kolmogorov-

Smirnov test (Table 5.3), where a lower Kolmogorov-Smirnov test value represents a 

better fit.  
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 LFT mixing is defined with a beta distribution that is directly optimized by the 

genetic algorithm. Values from that beta distribution are then input to the inverse model to 

represent LFT mixing fractions. A beta distribution is bounded by [0, 1], but the r value 

that represents LFT mixing in Equation 2.2 never equals 0 unless LFT specific humidity 

equals 0 g/kg. The range of physically possible r values is constantly changing as the 

inverse model progresses, due to continued changes in the combination of the saturation 

specific humidity of the evaporative flux and specific humidity of the LFT used to generate 

MBL Mix curves within the model. Because of this quantitative relationship and because 

of the methods used in this study, we find r is generally required to be greater than 

approximately 0.3 to match observations. Estimates of LFT mixing between seasons are 

illustrated in Figure 5.8.  Table 5.4 expresses the inverse model solved alpha and beta 

values for the LFT mixing beta distribution as well as the mean, minimum, and maximum 

LFT mixing values for each season.  Average LFT mixing is 0.70, 0.47, 0.53, and 0.65 for 

MAM, JJA, SON, DJF, respectively. Variability of mixing is highest during MAM and 

lowest during JJA. Figure 5.8 additionally includes the range of monthly average low-

cloud occurrence observations for each season from Rémillard et al. (2012), which are 
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compared to isotope-derived mixing estimates in Section 6.4. We additionally show the 

relation between isotope-derived LFT mixing and RHS in Figure 5.9 and Table 5.5, which 

is discussed in Section 6.6.  
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6. Discussion 

In this section, we compare observations from Graciosa Island to studies from the 

Bermuda Islands, North Atlantic Ocean tropical and subtropical cruises, and the equatorial 

Indian Ocean (Section 6.1); we explore the benefits and limitations of representing the LFT 

using Rayleigh fractionation (Section 6.2); we discuss the lower bound of LFT mixing 

solved by the inverse model (Section 6.3); we compare mixing variability and low-cloud 

observations between seasons (Section 6.4); we address the uncertainty of the MBL Mix 

inverse model (Section 6.5); and explore the added value of using water vapor 

isotopologue and humidity measurements to better understand mixing processes that 

influence low-cloud feedback compared to using humidity measurements alone (Section 

6.6).  

6.1 Comparison of Azores Observations to Other Study Areas  

 Steen Larsen et al. (2014) recorded continuous in situ isotope and humidity 

measurements on Bermuda between November 2011 and June 2013. They reported a time 

series of δ18O and d-excess for the entire study period. By comparing the two datasets we 

find δ18O and d-excess were more variable in the one year of measurements from Azores 

than the year and a half of measurements from Bermuda. In Bermuda, δ18O ranges between 

-8‰ and -16‰ while in the Azores it ranges between -8‰ and -21‰. d-excess ranged 

between -5‰ and 30‰ in Bermuda while it ranged between -20‰ and 40‰ in the Azores. 

This increase in variability may partly be attributed to differences in MBL specific 

humidity, SST, and ocean surface δ values between the two settings, because of their effect 

on the isotopic composition of water vapor evaporating from a water body and mixing into 
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the MBL. The Azores generally experience a lower specific humidity compared to the 

Bermuda, which causes evaporative flux to have a more isotopically depleted δ18O and 

higher d-excess. The Azores region also experiences cooler SST (16°C to 24°C) compared 

to Bermuda (20°C to 28°C), which would cause evaporative flux from the ocean to have 

more isotopically enriched δ18O and lower d-excess. Ocean surface δ values have been 

observed to be more isotopically depleted in the Azores region than in Bermuda (Benetti 

et al. 2017), which would lead to a more depleted δ18O of evaporative flux but could have 

variable effects on d-excess. Steen Larsen et. al (2014) also report annual averages from 

2012 observations on Bermuda; the annual average of δD (-80.8‰) and δ18O (-11.81‰) 

were both slightly higher compared to that of the Azores (-87.7‰ and -12.98‰, 

respectively), while average d-excess was lower in Bermuda (13.7‰) compared to that in 

the Azores (16.1‰). The Bermuda dataset additionally shows less isotopic variability of 

δ18O and d-excess in summer months than winter months. The Azores dataset shows the 

same trend in δ18O (standard deviation is 1.40‰ in JJA and 2.03‰ in DJF), but the opposite 

trend in d-excess (standard deviation is 5.2‰ in JJA and 1.7‰ in DJF).   

Benetti et al. (2014) reported STRASSE cruise data collected between mid-August 

and mid-September from the subtropical North Atlantic (26°N and 35°W) in a region of 

high excess evaporation. During this survey, δ18O generally varied between -9.5‰ and -

11‰, but decreased by 2.5‰ during a precipitation event, and δD generally varied between 

-70‰ and -80‰, but decreased by 18‰ during a precipitation event. d-excess ranged 

between 5 and 17‰. During a comparable time period in the Azores, variability was 

generally slightly larger for δD (-74‰ to -88‰) and δ18O (-11‰ to -13‰). Some of this 

increase in isotopic variability can be attributed to a more dynamic SST during this time 
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period; while the STRASSE cruise observed an SST variation of less than 1°C (between 

27°C and 28°C), data collected during the comparable time period in the Azores coincided 

with a change of approximately 2.5°C (between 23°C and 25.5°C). The STRASSE cruise 

area also took place in an area with more isotopically enriched ocean surface δ values than 

what has been observed in the Azores region (Benetti et al. 2017). Both of these 

observations would lead to a more isotopically depleted and variable evaporative flux in 

the Azores region, which is what is observed.  

Benetti et al. (2016) reported PIRATA cruise data from mid-August to mid-

September that was collected in the tropical Atlantic Ocean between 6°S and 6°N. This 

study reports a time series of observed δ18O and d-excess from the study period. 

Observations show δ18O generally stayed between -10‰ and -12‰ during the study period 

but ranged between -10‰ and -18‰. d-excess ranged between 6‰ and 16‰. During the 

cruise, SST ranged between 27°C and 29.5°C. Data from the Azores for a comparable time 

period has a similar range but slightly more isotopically depleted δ18O (-11‰ to -13‰), a 

higher and more variable d-excess range (10‰ to 23‰), and the same variability in SST 

but a cooler SST (23°C to 25.5°C).  

Kurita et al. (2011) reported cruise data from October to December 2006 that was 

collected in the tropical Indian Ocean. This study reports a time series of observed δD and 

d-excess from the study period that is divided between convectively inactive and 

convectively active times.  Convectively inactive times correspond to measurements of δD 

generally between -70‰ and -120‰, but convectively active times expand this range to 

between -70‰ and -170‰. Convectively inactive times correspond to d-excess measured 

generally between 12‰ and 21‰, but convectively active times expand this range to 
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between 7‰ and 23‰. In the Azores dataset, we do not separate convectively active from 

convectively inactive measurements. The δD observations from the Azores (-70‰ to -

130‰) have greater variability than the Indian Oceans convectively inactive time, but less 

variability than the convectively active period. The d-excess observations in the Azores (-

8‰ to 37‰) have greater variability than both the convectively active and inactive periods 

of time.  

6.2 Benefits and Limitations of Rayleigh Fractionation 

 Many studies do not have available instrumentation to simultaneously record 

isotope observations in multiple locations. Some studies overcome this limitation by using 

isotope data collected using satellite instrumentation (Worden et al., 2012). However, 

satellite data is restricted spatially, temporally, and by uncertainty constraints. Because of 

this, we attempt to use Rayleigh fractionation to constrain LFT characteristics using tools 

that were available to us at the DOE ARM facility and would commonly be available to 

other studies at a wide variety of locations. Setting up Rayleigh fractionation only requires 

MBL δ observations and a temperature profile from local weather balloon soundings. MBL 

δ values allow us to constrain the likely range of initial δ values that would undergo 

Rayleigh Fractionation. The temperature profile is used to calculate a profile of 

temperature-dependent equilibrium fractionation factors that would progressively 

influence the initial δ values.  

 Benetti et al. (2018) used spaceborne instruments, including Tropospheric 

Emission Spectrometer (TES, Worden et al., 2012) and Infrared Atmospheric Sounding 

Interferometer (Lacour et al., 2012), to construct climatology profiles for specific humidity 

and δD to constrain the LFT used for the MBL Mix forward model. They calculated δ18O 
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by using the δD from 3.5 km height and assumed d-excess of 15 or 30‰. By using Rayleigh 

fractionation, this study advances past previous work in two ways. (1) We do not need to 

calculate δ18O using an assumed d-excess. Instead, we can calculate the progressive effects 

of fractionation on both δD and δ18O individually in order to build profiles of δD, δ18O, 

and specific humidity for a large portion of the troposphere. (2) Instead of picking the 

height at which we suspect LFT air mixing into the MBL to be sourced, we can allow the 

inverse model to solve for this parameter. By building a tropospheric profile of these 

characteristics, we can allow the inverse model to pick a dry end-member point that 

represents the best-fit δD, δ18O, and specific humidity combination that will allow LFT 

mixing to match MBL observations while using physically constrained values to do this.  

A limitation of this approach is that the Rayleigh model of isotopic depletion is an 

idealized model and LFT observations do not always lie along a Rayleigh curve 

(Yoshimura et al., 2008). A Rayleigh curve can be considered a reference point and 

deviation from Rayleigh can be due to a number of factors, one of which is mixing between 

air masses (Galewsky and Hurley, 2010). Mixing results in the LFT δ being isotopically 

more enriched than what is predicted by Rayleigh. This study considered addressing this 

limitation by using a simple mass balance mixing model (Galewsky and Hurley, 2010) to 

generate a mixing curve between two points along a Rayleigh curve and to represent the 

LFT with a point along this secondary curve rather than the Rayleigh curve. We decided 

against this approach for two reasons. (1) The mixing curve can be highly variable based 

on the two points along a Rayleigh curve chosen to generate the mixing curve.  This would 

lead to poorly constrained LFT characteristics. (2) The computing power required for the 

MBL Mix inverse model to iteratively calculate an additional mixing curve from two points 
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along each Rayleigh curve would result in an inefficient model, especially considering it 

would lead to a more poorly constrained LFT. This study seeks the simplest model set-up 

capable of reproducing observed MBL trends, and Figures 5.5 through 5.7 show that the 

LFT characteristics chosen from a Rayleigh curve can meet this goal.  

An additional source of deviation from a Rayleigh Curve is due to cloud condensate 

re-evaporation (Noone, 2012).  This leads to observed δ values falling below the Rayleigh 

curve. The annual range of precipitation experienced by the Azores in generally between 

20 and 40% occurrence. However, it often completely evaporates prior to reaching the 

surface. Intense precipitation is more common in the fall and winter than the other seasons, 

due to frequent crossings of the North Atlantic storm track (Rémillard et al., 2012). Thus, 

deviation from Rayleigh due to re-evaporation is more common during these seasons. 

Benetti et al. (2015 and 2018) explain that the MBL Mix forward model does not simulate 

conditions where rain re-evaporation influences δ. This limitation of the MBL Mix forward 

model carries over into the MBL Mix inverse model. Because the MBL Mix inverse model 

does not consider these conditions, we do not consider deviation from Rayleigh due to rain 

re-evaporation to add any additional limitation to the model when representing the dry 

endmember of this model.  

6.3 LFT Mixing Lower Bound 

 As defined by Equation 2.2, LFT mixing never equals 0. This study finds LFT 

mixing is generally calculated to be greater than 0.3, meaning a minimum of 30% LFT 

moisture mixing into the MBL is required to match humidity and δ observations from the 

Azores in this analysis. In Benetti et al. (2018), data from the subtropics and midlatitudes 

is plotted with three MBL mix forward model curves that were each generated using 
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observed conditions those measurements were recorded during. We can roughly estimate 

the minimum r from Benetti et al. (2018) by dividing the LFT specific humidity used to 

generate the MBL mix curve intersecting the data by the specific humidity of the most 

humid observation from each dataset. By doing so, we find the minimum r values to be 

approximately 0.17 and 0.13 for the two midlatitude datasets and approximately 0.12 for 

the subtropical dataset. One reason the minimum r value in our analysis is determined to 

be higher than Benetti et al. (2018) is due differences in how these two studies have 

constrained properties of the LFT. While Benetti et al. (2018) constrain the LFT using TES 

data, this study uses Rayleigh fractionation. By definition, Rayleigh fractionation 

exclusively occurs when humidity is at saturation, meaning the specific humidity of the 

LFT used in this study is at saturation (between 5.3 and 5.9 g/kg), making it higher than 

the previous MBL mix study (between 1.7 and 2.14 g/kg) and our minimum r value is 

higher. If we were to plot observations from the Azores with an MBL mix curve generated 

using the subtropical (or midlatitudes) LFT characteristics used in Benetti et al. (2018), our 

minimum r values would roughly be 0.17 (0.14), 0.12 (0.10), 0.13 (0.10), and 0.17 (0.13) 

for MAM, JJA, SON, and DJF, respectively. Although a consequence of using Rayleigh 

fractionation is a higher minimum r, we argue that this method does not add any limitation 

to the ability of the inverse model to estimate seasonal-scale trends in mixing that match 

observed data.  

6.4 Seasonal-Scale LFT Mixing Variability and Low-Clouds 

 Inverse model-derived mixing estimates of four seasons in the Azores are reported 

on Table 5.4 and illustrated on Figure 5.8, where they are compared to the range of average 

low-cloud occurrence observations from a 19-month long field campaign at the DOE ARM 
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facility on Graciosa Island published by Rémillard et al. (2012). Rémillard et al. (2012) 

reported clouds occurred frequently over Graciosa Island, with a maximum occurrence of 

80% during the winter and spring months and a minimum of 60 to 65% during the summer 

months. This pattern of cloud occurrence for all cloud types anticorrelated with the 

seasonal cycle of low-clouds, which are the dominant cloud type in the region, observed 

throughout all seasons, and reach their maximum during the summer and fall seasons 

during the build-up of the Azores anticyclone. The build-up of this high-pressure system 

is strongest in the summertime and promotes low-cloud formation through a stronger and 

less variable inversion that caps the MBL. MBL Mix inverse model calculates the lowest 

seasonal mixing averages for JJA (0.47) and SON (0.53). JJA had the lowest mixing 

variability of all seasons (variance of 0.006) while SON had moderate variability (0.018). 

Rémillard et al. (2012) reported monthly averages for low-cloud occurrence which ranged 

between 50 through 70% for JJA and 30 through 60% for SON. The inverse model 

calculated the highest seasonal mixing averages for MAM (0.70) and DJF (0.65). MAM 

had the highest mixing variability (0.027) and DJF had moderate variability (0.017). The 

monthly average low-cloud occurrence reported by Rémillard et al. (2012) ranged between 

35 to 55% for MAM and 30 through 50% for DJF. This shows that the MBL Mix inverse 

model is capable of using isotope and humidity observations to estimate mixing trends that 

are consistent with observations of low-cloud formation.  

6.5 Uncertainty of MBL Mix Inverse Model 

 The K-S statistic used to determine the optimized MBL Mix inverse model output 

is reported on Table 5.3 for each season. Using a K-S statistic to evaluate error also returns 

a p value that is examined against a significance level (alpha = 0.1) to test the null 
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hypothesis that the synthetic data and observed data are generated with the same 

distribution. If the two datasets are determined to fall along the same distribution (p > 

alpha), then the model returns an H-value of 0, but if the two datasets are determined to 

fall along different distributions (p < alpha), then the model returns an H-value of 1.  

The H-values for specific humidity versus δD, δ18O, and d-excess were determined 

to be 0 for each season in this study, with the exception of δ18O and d-excess for SON. 

There are several potential contributing factors to this. (1) SON is the season with the 

largest number of observational points. Having a larger observational dataset makes 

matching it with synthetic data that has a H-value of 0 less likely because it is more difficult 

to get a higher p value. This means that even though the two distributions may visually 

appear indistinguishable, the model will still determine an H-value of 1.  (2) The 

atmospheric processes occurring during this season may be too variable and also deviate 

from what can be represented by MBL Mix. The high-pressure system that peaks in the 

summer also persists into September, but then lessens as the area starts to be crossed by 

the North Atlantic storm track in the fall. The stability of the anticyclone and the convective 

activity associated with storms represent very different atmospheric conditions that may 

produce a distribution of observed data points difficult to match with the beta distributions 

used in the inverse model. The storms also represent unstable conditions where rain re-

evaporation would influence the water vapor δ values, so they deviate from the stable 

conditions MBL Mix is designed to represent. Although this H-value criteria can be used 

to determine the significance of the fit between datasets, we argue the synthetic δ18O and 

d-excess for SON do not deviate from the observed δ18O and d-excess in a visually 

noticeable way (Figures 5.6 and 5.7) compared to the other seasons that do have an H-
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value of 0. Because of the synthetic data still broadly overlaps the area covered by the 

observed data, the SON season should still be considered for studying seasonal mixing 

trends.  

Future work for this study may include the uncertainty analysis approach completed 

by Galewsky (2018), where a 95% confidence interval is generated for each of the model 

parameters. This is done by running MBL Mix inverse model many (a minimum of 100) 

times using bootstrapping techniques with resampling and substitution. This level of 

uncertainty analysis is out of the scope of this thesis due to limitations of the computing 

power required to perform this level of analysis using the MBL Mix inverse model. We 

note Galewsky and Rabanus (2016) also did not include this uncertainty analysis in their 

study using inverse modeling. Instead of bootstrapping, we compare the output from the 

pool of different inverse model runs used to determine the best-fit model set-up by 

adjusting both the population size of each generation of the genetic algorithm (using 

population sizes of 2000 and 3000) as well as the upper bound of the alpha and beta values 

used to generate the beta distribution of each parameter optimized by the genetic algorithm 

(using alpha and beta value upper bounds of 25, 50, and 100).  

The variability in LFT mixing found between different model set-ups is recorded 

on Table 6.1. Average LFT mixing ranges between 0.59 and 0.73 for MAM, 0.46 and 0.50 

for JJA, 0.46 and 0.57 for SON, and 0.42 and 0.66 for DJF. We note that the DJF model 

set-ups with the lowest average LFT mixing also have the highest average K-S statistics (> 

0.05 higher than other DJF model set-up average K-S statistics). If the two DJF model set-

ups with the particularly high K-S statistics were left out of consideration, the range of 

average LFT mixing would be 0.52 to 0.66. We argue this approach to uncertainty analysis 
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supports the ability of inverse modeling, using a combination of genetic algorithm 

optimization, MBL Mix, and Rayleigh fractionation, to reproduce observed trends in 

isotope and humidity data and provide a constrained estimation of LFT mixing.  
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6.6 Advantage of Using Water Vapor Isotopologues in Addition to Humidity 

Previous work has argued water vapor isotopologues do not provide additional 

constraints on atmospheric processes that are already possible using humidity 

measurements alone. Duan et al. (2018) used a single column model to show free 

tropospheric δD is insensitive to convective parameters and variations in δD are 

comparable or smaller than uncertainty to conclude δD is unlikely to provide information 

about cloud forming processes that cannot be learned exclusively from RH. Although their 

work highlights the importance of considering the crossroads of water vapor isotopologue 

sensitivities and uncertainties in climate models, the study design uses highly uncertain 

convective parameters to estimate changes in water vapor isotopologues that already have 

high uncertainties due to combining remote sensing uncertainties with model assumption 

uncertainties (the study did not considering a dynamic temperature-dependent equilibrium 

fractionation factor and did not allow changes in the MBL water vapor isotopologue 

composition), so their conclusion is not surprising.  

RH has been given particularly high importance in climate modeling studies to 

better understand changes to the water cycle under future warming climate conditions, 

specifically with regards to cloud feedback (Sherwood et al., 2010; Rieck et al., 2012; 

Sherwood et al., 2014; Duan et al., 2018). We consider if there is a quantitative relation 

between isotope-derived LFT mixing and RHS to explore if the dependent variable RHS 

can be used to approximate the independent variable LFT mixing. Note that we use RHS 

rather than RH in this consideration, because the MBL Mix inverse model outputs RHS 

rather than RH, so RH is considered as a function of SST rather than ambient air 

temperature. Figure 5.9 illustrates this relation. While there is a general correlation among 
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the entire dataset (R2 is 0.68), MAM and DJF have the highest correlation between the two 

variables (R2 of 0.87 and 0.82, respectively) and fall along similar curves, while JJA and 

SON have a slightly lower correlation (R2 of 0.67 and 0.72, respectively) and fall along 

similar curves. We point out that it is interesting the correlation is lowest for JJA, the season 

with the highest occurrence of low-clouds and most similar atmospheric conditions to the 

subtropics, where low-cloud feedback is of exceptional interest in climate models.  

The relation between isotope-derived LFT mixing and RHS does not appear to be 

linear, particularly at higher LFT mixing values and lower RHS values, so we fit the entire 

dataset as well as each individual season with a 2nd degree polynomial to explore if RHS 

can be used to estimate LFT Mixing (Table 5.5). If an RHS of 90% is used to estimate 

LFT mixing, MAM and DJF predict an LFT mixing of approximately 0.48 and 0.45, 

respectively, while both JJA and SON predict an LFT mixing of approximately 0.37. If an 

RHS of 60% is used to estimate LFT mixing, MAM and DJF predict an LFT mixing of 

approximately 0.75 and 0.73, respectively, while JJA and SON predict an LFT mixing of 

approximately 0.63 and 0.62, respectively. When using the entire dataset to predict LFT 

mixing, a higher RHS predicts values closer to those estimated by JJA and SON (0.38 LFT 

mixing for 90% RHS) and a lower RHS predicts values closer to those estimated by MAM 

and DJF (0.71 LFT mixing for 60% RHS). Although there is certainly a strong relation 

between LFT mixing and RHS, Figure 5.9 and Table 5.5 support this quantitative relation 

to be dynamic between seasons in the Azores, meaning RHS alone is not a consistent 

predictor of a unique LFT mixing value.  

A possible argument from those who do not support the use of water vapor 

isotopologues in atmospheric studies against the above described relation between LFT 
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mixing and RHS is that all values used to explore this quantitative relation are isotope-

derived (RHS and LFT mixing are both MBL Mix inverse model output) and that we use 

RHS instead of RH. We address this concern with the following observation and 

discussion. If we were to approach estimating seasonal trends of LFT mixing in the Azores 

without isotopes and instead based on changes in observed RH from the DOE ARM met 

station, we would conclude mixing, and thus low-cloud occurrence, is the same between 

JJA (RH mean is 76% and standard deviation is 10.8%) and DJF (RH mean is 78% and 

standard deviation is 10.7%) because the distribution of observed RH is essentially the 

same. Based on observations from Rémillard et al. (2012), this trend in the RH and low-

cloud relation does not match observations, where the season with the highest occurrence 

of low-clouds is JJA and the lowest occurrence of low-clouds is DJF. The isotope-derived 

LFT mixing estimates provide us with a more integrated story. Water vapor isotopologues 

record environmental factors not always as sensitively recorded by RH that influence low-

clouds (for example, inversion strength). This allows them to provide LFT mixing 

estimates that are consistent with the relation between large- and small-scale mixing and 

low-cloud feedback that has been shown to be the greatest source of uncertainty in climate 

modeling (Sherwood et al. 2014).  

The results of our study using the MBL Mix inverse model support an added value 

from combining humidity measurements with water vapor isotopologues. In contrast to 

Duan et al. (2018), by using in situ measurements of humidity and water vapor 

isotopologues that have a significantly lower uncertainty than those collected via remote 

sensing, we are able to provide a more constrained LFT mixing estimate. The MBL Mix 

inverse model has particular added value because it allows us to consider not only the 
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quantity of water vapor in the air, but also the sources of that water vapor. By using a 

measurement that is sensitive to a wide variety of processes that may influence mixing, 

relative humidity, and cloudiness, such as changes in SST, inversion strength, and MBL 

height, further studying water vapor isotopologues can potentially clarify ambiguous 

results from previous work that has failed to determine the sign and extent of low-cloud 

feedback.  

This study does not advocate that water vapor isotopologues are an immediate 

solution for low-cloud feedback in climate models. Stable isotope measurements of water 

vapor are sensitive recorders of many processes in the atmospheric hydrologic cycle and 

quantitatively constraining each of those processes is very difficult (Risi et al. 2019). 

However, this study has demonstrated a quantitative relation between water vapor 

isotopologues and LFT mixing that is not recorded by humidity measurements alone and 

should be further explored as a potential measurement tool to improve understanding of 

the quantitative relation between isotope-derived mixing and low-cloud feedback. This can 

be done by applying isotope-derived mixing values from in situ measurements to isotope-

enabled single column models. By doing so, the sensitivity of GCMs to different 

parameterizations of low-cloud feedback can be tested and results will provide a quality 

check on the methods used to represent low-cloud feedback in climate models, thereby 

informing improved simulation.  
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7. Conclusions 

In this study, we present a new dataset that includes one year of humidity and water 

vapor isotopologue measurements recorded at the DOE ARM facility on Graciosa Island, 

Azores. These observations are compared to data collected at tropical and subtropical 

regions in the Atlantic and Indian Oceans to show that the Azores observations have higher 

variability in d-excess than the other locations as well as equal or higher variability in δ 

values than the other locations except for the Indian Ocean. Observations from the Azores 

are also compared to three models, including the closure assumption, a simple mixing 

model (Gedzelman, 1988), and a mixing model that accounts for a dynamic evaporative 

flux (MBL Mix; Benetti et al. 2018), to show mixing from the LFT and a dynamic 

evaporative flux are required to consistently match observed MBL δ values.  

The primary goal of this study was to explore the ability of water vapor 

isotopologues to record LFT mixing, due to its important implications on low-cloud 

feedback and its associated uncertainty in climate models.  We do this by using the MBL 

Mix forward model to build an inverse model (MBL Mix inverse model) capable of using 

isotope and humidity observations from the MBL to estimate LFT mixing. Many studies 

are limited by their inability to measure the LFT directly, and this study shows that this 

limitation can be overcome by using a Rayleigh model of isotopic depletion to represent 

LFT characteristics. We use observations from the Azores with the MBL Mix inverse 

model to estimate seasonal-scale LFT mixing average and variability for MAM 2018, JJA 

2018, SON 2018, and DJF 2018 to 2019.  
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The results of this study show synthetic data generated by the MBL Mix inverse 

model can reproduce observed isotope and humidity trends in the Azores. Under the current 

inverse model setup, LFT mixing is generally required to be greater than 0.3 to match 

observed trends. When we compare LFT mixing estimates to previous work completed in 

the Azores by Rémillard et al. (2012), we find LFT mixing is calculated to be lowest 

(highest) during the seasons that historically are recorded with the highest (lowest) low-

cloud occurrence. Although this study does not quantify the extent to which changes in 

isotope-derived LFT mixing correspond to changes in low-cloud occurrence, we show 

water vapor isotopologues have successfully estimated trends in LFT mixing associated 

with expected changes in low-cloud cover (where more mixing leads to less low-cloud 

cover, as demonstrated by Sherwood et al., 2014) and provide an inverse modeling tool by 

which future work can investigate the quantitative relation. We show isotope-derived RHS 

and LFT mixing are clearly related, but this relation is not consistent between all seasons 

and leads to a broad range of LFT mixing estimates for a given RHS. Additionally, trends 

in the distribution of seasonal observations of RH in the Azores do not indicate the same 

trends in LFT mixing, and that these trends would predict LFT mixing that is inconsistent 

with observations of low-cloud cover. This study concludes water vapor isotopologues 

provide unique information about the mixing processes that will determine future low-

cloud feedback, and that this information cannot be gained with humidity measurements 

alone in this study setting. Water vapor isotopologue measurements should therefore be 

further pursued as a potential method to improve our understanding of LFT mixing and 

low-cloud cover. By doing so, they may provide useful knowledge regarding low-cloud 
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feedback that leads to more realistic climate model simulations and more constrained 

estimates of likely future temperature conditions.  
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Appendix: 

Table A.1 documents the parameters of the MBL Mix inverse model. This includes 

variables directly optimized by the MBL Mix inverse model’s genetic algorithm, variables 

indirectly optimized within the inverse model, or variables used within the model that were 

generated using observational data for each season. Parameters directly optimized by the 

inverse model’s genetic algorithm are those that the genetic algorithm continually adjusts 

within an upper and lower bound to solve for an optimal solution capable of reproducing 

observed trends. This includes beta distribution used to generate values for initial δD and 

δ18O values used for Rayleigh fractionation, lifting condensation level used to begin 

Rayleigh fractionation, LFT specific humidity, δD and δ18O of the ocean surface, and LFT 

mixing. Parameters of the MBL Mix inverse model that were indirectly optimized by the 

genetic algorithm include LFT δD and δ18O as well as MBL specific humidity, δD, and 

δ18O. Indirectly optimized by the genetic algorithm means these variables were calculated 

through their numerical relation to the other parameters that were directly optimized. 

Evaporative flux saturation specific humidity was not optimized directly or indirectly, but 

rather calculated by using observational data of surface pressure and NOAA SST 

measurements. Parameters are illustrated in Figures A.1 through A.12.  
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α β Mean α β Mean α β Mean
8.83 1.04 -75.1 31.78 10.99 -12.33 4.22 15.03 798.6
6.72 1.70 -85.1 25.17 11.49 -13.26 1.06 33.93 757.0
4.45 0.42 -72.8 24.47 11.82 -13.59 0.73 23.15 757.8
1.98 0.54 -86.3 27.95 19.00 -14.9 14.08 32.95 819.9

α β Mean α β Mean α β Mean

16.55 15.50 5.3 - - -103.4 - - -15.57
0.68 19.83 5.9 - - -133.3 - - -18.92
7.22 24.29 5.6 - - -109.8 - - -17.83
8.52 8.18 5.6 - - -117.1 - - -18.45

α β Mean α β Mean α β Mean

- - 12.0 11.24 14.86 4.3 2.08 30.52 0.14
- - 16.8 8.09 10.89 4.2 1.84 34.64 0.10
- - 15.8 3.84 10.55 2.7 0.37 38.56 0.02
- - 11.8 4.35 21.11 1.7 0.07 30.27 0.01

α β Mean α β Mean α β Mean

- - 8.0 - - -89.9 - - -13.3
- - 12.8 - - -84.2 - - -12.20
- - 11.2 - - -84.7 - - -12.84
- - 8.1 - - -94.6 - - -14.18

Table A.1: Parameters of interest from the MBL Mix inverse model for each season are reported, which include 
parameters related to Rayleigh fractionation, the model dry end-member and moist end-member, the MBL, and 
LFT mixing. For each parameter, the inverse model solved alpha and beta parameters for the beta distributions are 
reported with the mean of their distributions.  

1.51

SON (2018)
DJF (2018 - 2019)

LFT Mixing (fraction of mixing)

JJA (2018)

α
0.89
1.91

β
1.05
8.21
2.74
2.37

0.47
0.53
0.65

0.98

SON (2018)
DJF (2018 - 2019)

MBL Mix Inverse Model Mixing Parameter

Time Period

MAM (2018)
Mean
0.70

MBL Parameters

MAM (2018)
JJA (2018)

MBL Specific Humidity 
(g/kg)

MBL δD (‰) MBL δ18O (‰)
Time Period

JJA (2018)
SON (2018)

DJF (2018 - 2019)

LFT δ18O (‰)

Evaporative Flux Saturation 
Specific Humidity (g/kg)

Ocean Surface δD (‰) Ocean Surface δ18O (‰)

Moist End-Member Parameters

MAM (2018)
JJA (2018)
SON (2018)

DJF (2018 - 2019)

Time Period

MAM (2018)

Table A.1:  MBL Inverse Model Parameters of Interest
Rayleigh Fractionation Parameters

Dry End-Member Parameters

LFT Specific Humidity 
(g/kg)

LFT δD (‰)
Time Period

Time Period
Initial δD for Rayleigh 

Fractionation (‰) 
Initial δ18O for Rayleigh 

Fractionation (‰) 
Lifting Condensation Level 

(hPa)

MAM (2018)
JJA (2018)
SON (2018)

DJF (2018 - 2019)
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