74 research outputs found

    Adult Patients with Congenital Adrenal Hyperplasia Have Elevated Blood Pressure but Otherwise a Normal Cardiovascular Risk Profile

    Get PDF
    Contains fulltext : 96615.pdf (publisher's version ) (Open Access)OBJECTIVE: Treatment with glucocorticoids and mineralocorticoids has changed congenital adrenal hyperplasia (CAH) from a fatal to a chronic lifelong disease. Long-term treatment, in particular the chronic (over-)treatment with glucocorticoids, may have an adverse effect on the cardiovascular risk profile in adult CAH patients. The objective of this study was to evaluate the cardiovascular risk profile of adult CAH patients. DESIGN: Case-control study. PATIENTS AND MEASUREMENTS: In this case-control study the cardiovascular risk profile of 27 adult CAH patients and 27 controls, matched for age, sex and body mass index was evaluated by measuring ambulatory 24-hour blood pressure, insulin sensitivity (HOMA-IR), lipid profiles, albuminuria and circulating cardiovascular risk markers (PAI-1, tPA, uPA, tPA/PAI-1 complex, hsCRP, adiponectin, IL-6, IL-18 and leptin). RESULTS: 24-Hour systolic (126.3 mmHg+/-15.5 vs 124.8 mmHg+/-15.1 in controls, P = 0.019) and diastolic (76.4 mmHg+/-12.7 vs 73.5 mmHg+/-12.4 in controls, P<0.001) blood pressure was significantly elevated in CAH patients compared to the control population. CAH patients had higher HDL cholesterol levels (P<0.01), lower hsCRP levels (P = 0.03) and there was a trend toward elevated adiponectin levels compared to controls. Other cardiovascular risk factors were similar in both groups. CONCLUSION: Adult CAH patients have higher ambulatory blood pressure compared to healthy matched controls. Other cardiovascular risk markers did not differ, while HDL-cholesterol, hsCRP and adiponectin levels tended to be more favorable

    Impact of Resistant Starch on Body Fat Patterning and Central Appetite Regulation

    Get PDF
    Background: Adipose tissue patterning has a major influence on the risk of developing chronic disease. Environmental influences on both body fat patterning and appetite regulation are not fully understood. This study was performed to investigate the impact of resistant starch (RS) on adipose tissue deposition and central regulation of appetite in mice. Methodology and Principle Findings: Forty mice were randomised to a diet supplemented with either the high resistant starch (HRS), or the readily digestible starch (LRS). Using 1H magnetic resonance (MR) methods, whole body adiposity, intrahepatocellular lipids (IHCL) and intramyocellular lipids (IMCL) were measured. Manganese-enhanced MRI (MEMRI) was used to investigate neuronal activity in hypothalamic regions involved in appetite control when fed ad libitum. At the end of the interventional period, adipocytes were isolated from epididymal adipose tissue and fasting plasma collected for hormonal and adipokine measurement. Mice on the HRS and LRS diet had similar body weights although total body adiposity, subcutaneous and visceral fat, IHCL, plasma leptin, plasma adiponectin plasma insulin/glucose ratios was significantly greater in the latter group. Adipocytes isolated from the LRS group were significantly larger and had lower insulin-stimulated glucose uptake. MEMRI data obtained from the ventromedial and paraventricular hypothalamic nuclei suggests a satiating effect of the HRS diet despite a lower energy intake. Conclusion and Significance: Dietary RS significantly impacts on adipose tissue patterning, adipocyte morphology and metabolism, glucose and insulin metabolism, as well as affecting appetite regulation, supported by changes in neuronal activity in hypothalamic appetite regulation centres which are suggestive of satiation

    Human Resistin Is a Systemic Immune-Derived Proinflammatory Cytokine Targeting both Leukocytes and Adipocytes

    Get PDF
    The characteristics of human resistin (RETN) are unclear and controversial despite intensive adipose-focused research. Its transcriptional and functional similarity with the murine myeloid-specific and CCAAT/enhancer binding protein epsilon (Cebpe)-dependent gene, resistin-like gamma (Retnlg), is unexplored. We examined the human CEBPE-regulatory pathway by unbiased reference and custom gene expression assays. Real-time RT-PCR analysis demonstrated lack of both the transcriptional factor CEBPE and RETN expression in adipose and muscle cells. In contrast, primary myelocytic samples revealed a concerted CEBPE-RETN transcription that was significantly elevated in inflammatory synoviocytes relative to intact peripheral blood mononuclear cells (PBMC). Mouse Cebpe and Retnlg were predictably expressed in macrophages, whereas Retn was abundant in adipocytes. Quite the opposite, a low and inconsistent RETN transcription was seen in some human white adipose tissue (WAT) biopsies without any relationship to body mass index, insulin sensitivity, or fat depot. However, in these cases, RETN was co-detected with CEBPE and the leukocyte-specific marker, EMR1, indicating the presence of inflammatory cells and their possible resistin-mediated effect on adipocytes. Indeed, addition of human resistin to WAT in culture induced, like in PBMC, the inflammatory cytokines IL6, IL8 and TNF. Importantly, the expression of the adipose-specific markers CEBPA, FABP4 and SLC2A4 was unchanged, while the expected inhibitory effect was seen with TNF. Both cytokines increased the mRNA level of CCL2 and MMP3, which may further promote inflammation in WAT. Thus, the myeloid-restricted nature of CEBPE precludes the expression of RETN in human adipocytes which, however, are targeted by this innate immune-derived proinflammatory cytokine

    The triterpene echinocystic acid and its 3-O-glucoside derivative are revealed as potent and selective glucocorticoid receptor agonists

    Get PDF
    Glucocorticoids are steroid hormones widely used to control many inflammatory conditions. These effects are primarily attributed to glucocorticoid receptor transrepressional activities but with concomitant receptor transactivation associated with considerable side effects. Accordingly, there is an immediate need for selective glucocorticoid receptor agonists able to dissociate transactivation from transrepression. Triterpenoids have structural similarities with glucocorticoids and exhibit anti-inflammatory and apoptotic activities via mechanisms that are not well-defined. In this study, we examined whether echinocystic acid and its 3-O-glucoside derivative act, at least in part, through the regulation of glucocorticoid receptor and whether they can constitute selective receptor activators. We showed that echinocystic acid and its glucoside induced glucocorticoid receptor nuclear translocation by 75% and 55%. They suppressed the nuclear factor-kappa beta transcriptional activity by 20% and 70%, respectively, whereas they have no glucocorticoid receptor transactivation capability and stimulatory effect on the expression of the phosphoenolopyruvate carboxykinase target gene in HeLa cells. Interestingly, their suppressive effect is diminished in glucocorticoid receptor low level COS-7 cells, verifying the receptor involvement in this process. Induced fit docking calculations predicted favorable binding in the ligand binding domain and structural characteristics which can be considered consistent with the experimental observations. Further, glucocorticoids exert apoptotic activities; we have demonstrated here that the echinocystic acids in combination with the synthetic glucocorticoid, dexamethasone, induce apoptosis. Taken together, our results indicate that echinocystic acids are potent glucocorticoid receptor regulators with selective transrepressional activities (dissociated from transactivation), highlighting the potential of echinocystic acid derivatives as more promising treatments for inflammatory conditions

    Leptin, resistin and visfatin: the missing link between endocrine metabolic disorders and immunity

    Get PDF
    corecore