429 research outputs found

    Factorization of Operators Through Orlicz Spaces

    Full text link
    [EN] We study factorization of operators between quasi-Banach spaces. We prove the equivalence between certain vector norm inequalities and the factorization of operators through Orlicz spaces. As a consequence, we obtain the Maurey-Rosenthal factorization of operators into L-p-spaces. We give several applications. In particular, we prove a variant of Maurey's Extension Theorem.The research of the first author was supported by the National Science Centre (NCN), Poland, Grant No. 2011/01/B/ST1/06243. The research of the second author was supported by Ministerio de Economia y Competitividad, Spain, under project #MTM2012-36740-C02-02Mastylo, M.; SĂĄnchez PĂ©rez, EA. (2017). Factorization of Operators Through Orlicz Spaces. Bulletin of the Malaysian Mathematical Sciences Society. 40(4):1653-1675. https://doi.org/10.1007/s40840-015-0158-5S16531675404CalderĂłn, A.P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24, 113–190 (1964)Davis, W.J., Garling, D.J.H., Tomczak-Jaegermann, N.: The complex convexity of quasi-normed linear spaces. J. Funct. Anal. 55, 110–150 (1984)Defant, A.: Variants of the Maurey–Rosenthal theorem for quasi Köthe function spaces. Positivity 5, 153–175 (2001)Defant, A., MastyƂo, M., Michels, C.: Orlicz norm estimates for eigenvalues of matrices. Isr. J. Math. 132, 45–59 (2002)Defant, A., SĂĄnchez PĂ©rez, E.A.: Maurey–Rosenthal factorization of positive operators and convexity. J. Math. Anal. Appl. 297, 771–790 (2004)Defant, A., SĂĄnchez PĂ©rez, E.A.: Domination of operators on function spaces. Math. Proc. Camb. Phil. Soc. 146, 57–66 (2009)Diestel, J.: Sequences and Series in Banach Spaces. Springer, Berlin (1984)Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)Dilworth, S.J.: Special Banach lattices and their applications. In: Handbook of the Geometry of Banach Spaces, vol. 1. Elsevier, Amsterdam (2001)Figiel, T., Pisier, G.: SĂ©ries alĂ©toires dans les espaces uniformĂ©ment convexes ou uniformĂ©ment lisses. Comptes Rendus de l’AcadĂ©mie des Sciences, Paris, SĂ©rie A 279, 611–614 (1974)Kalton, N.J., Montgomery-Smith, S.J.: Set-functions and factorization. Arch. Math. (Basel) 61(2), 183–200 (1993)KamiƄska, A., MastyƂo, M.: Abstract duality Sawyer formula and its applications. Monatsh. Math. 151(3), 223–245 (2007)Kantorovich, L.V., Akilov, G.P.: Functional Analysis, 2nd edn. Pergamon Press, Oxford (1982)Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1979)Lozanovskii, G.Ya.: On some Banach lattices IV, Sibirsk. Mat. Z. 14, 140–155 (1973) (in Russian); English transl.: Siberian. Math. J. 14, 97–108 (1973)Lozanovskii, G.Ya.:Transformations of ideal Banach spaces by means of concave functions. In: Qualitative and Approximate Methods for the Investigation of Operator Equations, Yaroslavl, vol. 3, pp. 122–147 (1978) (Russian)MastyƂo, M., Szwedek, R.: Interpolative constructions and factorization of operators. J. Math. Anal. Appl. 401, 198–208 (2013)NikiĆĄin, E.M.: Resonance theorems and superlinear operators. Usp. Mat. Nauk 25, 129–191 (1970) (Russian)Okada, S., Ricker, W.J., SĂĄnchez PĂ©rez, E.A.: Optimal Domain and Integral Extension of Operators acting in Function Spaces. Operator Theory: Adv. Appl., vol. 180. BirkhĂ€user, Basel (2008)Pisier, G.: Factorization of linear operators and geometry of Banach spaces. CBMS Regional Conference Series in Mathematics, vol. 60. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1986)Reisner, S.: On two theorems of Lozanovskii concerning intermediate Banach lattices, geometric aspects of functional analysis (1986/87). Lecture Notes in Math., vol. 1317, pp. 67–83. Springer, Berlin (1988)Wojtaszczyk, P.: Banach Spaces for Analysts. Cambridge University Press, Cambridge (1991

    The power of symmetric extensions for entanglement detection

    Full text link
    In this paper, we present new progress on the study of the symmetric extension criterion for separability. First, we show that a perturbation of order O(1/N) is sufficient and, in general, necessary to destroy the entanglement of any state admitting an N Bose symmetric extension. On the other hand, the minimum amount of local noise necessary to induce separability on states arising from N Bose symmetric extensions with Positive Partial Transpose (PPT) decreases at least as fast as O(1/N^2). From these results, we derive upper bounds on the time and space complexity of the weak membership problem of separability when attacked via algorithms that search for PPT symmetric extensions. Finally, we show how to estimate the error we incur when we approximate the set of separable states by the set of (PPT) N -extendable quantum states in order to compute the maximum average fidelity in pure state estimation problems, the maximal output purity of quantum channels, and the geometric measure of entanglement.Comment: see Video Abstract at http://www.quantiki.org/video_abstracts/0906273

    On the Bohr inequality

    Full text link
    The Bohr inequality, first introduced by Harald Bohr in 1914, deals with finding the largest radius rr, 0<r<10<r<1, such that ∑n=0∞∣an∣rn≀1\sum_{n=0}^\infty |a_n|r^n \leq 1 holds whenever ∣∑n=0∞anznâˆŁâ‰€1|\sum_{n=0}^\infty a_nz^n|\leq 1 in the unit disk D\mathbb{D} of the complex plane. The exact value of this largest radius, known as the \emph{Bohr radius}, has been established to be 1/3.1/3. This paper surveys recent advances and generalizations on the Bohr inequality. It discusses the Bohr radius for certain power series in D,\mathbb{D}, as well as for analytic functions from D\mathbb{D} into particular domains. These domains include the punctured unit disk, the exterior of the closed unit disk, and concave wedge-domains. The analogous Bohr radius is also studied for harmonic and starlike logharmonic mappings in D.\mathbb{D}. The Bohr phenomenon which is described in terms of the Euclidean distance is further investigated using the spherical chordal metric and the hyperbolic metric. The exposition concludes with a discussion on the nn-dimensional Bohr radius

    Factorization of operators through subspaces of L-1-spaces

    Full text link
    [EN] We analyze domination properties and factorization of operators in Banach spaces through subspaces of L1-spaces. Using vector measure integration and extending classical arguments based on scalar integral bounds, we provide characterizations of operators factoring through subspaces of L1-spaces of finite measures. Some special cases involving positivity and compactness of the operators are considered.Research supported by MINECO/FEDER under projects MTM2014-53009-P (J.M Calabuig), MTM2014-54182-P (J. Rodriguez) and MTM2012-36740-C02-02 (E. A. Sanchez-Perez).Calabuig, JM.; RodrĂ­guez, J.; SĂĄnchez PĂ©rez, EA. (2017). Factorization of operators through subspaces of L-1-spaces. Journal of the Australian Mathematical Society. 103(3):313-328. https://doi.org/10.1017/S1446788716000513S3133281033Lindenstrauss, J., & Tzafriri, L. (1979). Classical Banach Spaces II. doi:10.1007/978-3-662-35347-9Pisier, G. (1986). Factorization of Linear Operators and Geometry of Banach Spaces. CBMS Regional Conference Series in Mathematics. doi:10.1090/cbms/060Okada, S., Ricker, W. J., & SĂĄnchez PĂ©rez, E. A. (2008). Optimal Domain and Integral Extension of Operators. doi:10.1007/978-3-7643-8648-1Lacey, H. E. (1974). The Isometric Theory of Classical Banach Spaces. doi:10.1007/978-3-642-65762-7FernĂĄndez, A., Mayoral, F., Naranjo, F., SĂĄez, C., & SĂĄnchez-PĂ©rez, E. A. (2005). Vector measure Maurey–Rosenthal-type factorizations and ℓ-sums of L1-spaces. Journal of Functional Analysis, 220(2), 460-485. doi:10.1016/j.jfa.2004.06.010Juan, M. A., & SĂĄnchez PĂ©rez, E. A. (2013). Maurey-Rosenthal domination for abstract Banach lattices. Journal of Inequalities and Applications, 2013(1). doi:10.1186/1029-242x-2013-213AvilĂ©s, A., Cabello SĂĄnchez, F., Castillo, J. M. F., GonzĂĄlez, M., & Moreno, Y. (2013). On separably injective Banach spaces. Advances in Mathematics, 234, 192-216. doi:10.1016/j.aim.2012.10.013Defant, A., & SĂĄnchez PĂ©rez, E. A. (2004). Maurey–Rosenthal factorization of positive operators and convexity. Journal of Mathematical Analysis and Applications, 297(2), 771-790. doi:10.1016/j.jmaa.2004.04.047DEFANT, A., & PÉREZ, E. A. S. (2009). Domination of operators on function spaces. Mathematical Proceedings of the Cambridge Philosophical Society, 146(1), 57-66. doi:10.1017/s0305004108001734Bartle, R. G., Dunford, N., & Schwartz, J. (1955). Weak Compactness and Vector Measures. Canadian Journal of Mathematics, 7, 289-305. doi:10.4153/cjm-1955-032-1Rosenthal, H. P. (1974). A Characterization of Banach Spaces Containing l1. Proceedings of the National Academy of Sciences, 71(6), 2411-2413. doi:10.1073/pnas.71.6.2411Diestel, J., Jarchow, H., & Tonge, A. (1995). Absolutely Summing Operators. doi:10.1017/cbo9780511526138Rueda, P., & SĂĄnchez-PĂ©rez, E. A. (2015). Compactness in spaces of p-integrable functions with respect to a vector measure. Topological Methods in Nonlinear Analysis, 45(2), 641. doi:10.12775/tmna.2015.030Rosenthal, H. P. (1973). On Subspaces of L p. The Annals of Mathematics, 97(2), 344. doi:10.2307/1970850Diestel, J., & Uhl, J. (1977). Vector Measures. Mathematical Surveys and Monographs. doi:10.1090/surv/015[16] M. MastyƂo and E. A. SĂĄnchez-PĂ©rez , ‘Factorization of operators through Orlicz spaces’, Bull. Malays. Math. Sci. Soc. doi:10.1007/s40840-015-0158-5, to appear.Calabuig, J. M., Lajara, S., RodrĂ­guez, J., & SĂĄnchez-PĂ©rez, E. A. (2014). Compactness in L1of a vector measure. Studia Mathematica, 225(3), 259-282. doi:10.4064/sm225-3-6Defant, A. (2001). Positivity, 5(2), 153-175. doi:10.1023/a:1011466509838Fabian, M., Habala, P., HĂĄjek, P., Montesinos, V., & Zizler, V. (2011). Banach Space Theory. CMS Books in Mathematics. doi:10.1007/978-1-4419-7515-

    Smolyak's algorithm: A powerful black box for the acceleration of scientific computations

    Full text link
    We provide a general discussion of Smolyak's algorithm for the acceleration of scientific computations. The algorithm first appeared in Smolyak's work on multidimensional integration and interpolation. Since then, it has been generalized in multiple directions and has been associated with the keywords: sparse grids, hyperbolic cross approximation, combination technique, and multilevel methods. Variants of Smolyak's algorithm have been employed in the computation of high-dimensional integrals in finance, chemistry, and physics, in the numerical solution of partial and stochastic differential equations, and in uncertainty quantification. Motivated by this broad and ever-increasing range of applications, we describe a general framework that summarizes fundamental results and assumptions in a concise application-independent manner

    Large violation of Bell inequalities with low entanglement

    Get PDF
    In this paper we obtain violations of general bipartite Bell inequalities of order nlog⁥n\frac{\sqrt{n}}{\log n} with nn inputs, nn outputs and nn-dimensional Hilbert spaces. Moreover, we construct explicitly, up to a random choice of signs, all the elements involved in such violations: the coefficients of the Bell inequalities, POVMs measurements and quantum states. Analyzing this construction we find that, even though entanglement is necessary to obtain violation of Bell inequalities, the Entropy of entanglement of the underlying state is essentially irrelevant in obtaining large violation. We also indicate why the maximally entangled state is a rather poor candidate in producing large violations with arbitrary coefficients. However, we also show that for Bell inequalities with positive coefficients (in particular, games) the maximally entangled state achieves the largest violation up to a logarithmic factor.Comment: Reference [16] added. Some typos correcte
    • 

    corecore