453 research outputs found
The power of symmetric extensions for entanglement detection
In this paper, we present new progress on the study of the symmetric
extension criterion for separability. First, we show that a perturbation of
order O(1/N) is sufficient and, in general, necessary to destroy the
entanglement of any state admitting an N Bose symmetric extension. On the other
hand, the minimum amount of local noise necessary to induce separability on
states arising from N Bose symmetric extensions with Positive Partial Transpose
(PPT) decreases at least as fast as O(1/N^2). From these results, we derive
upper bounds on the time and space complexity of the weak membership problem of
separability when attacked via algorithms that search for PPT symmetric
extensions. Finally, we show how to estimate the error we incur when we
approximate the set of separable states by the set of (PPT) N -extendable
quantum states in order to compute the maximum average fidelity in pure state
estimation problems, the maximal output purity of quantum channels, and the
geometric measure of entanglement.Comment: see Video Abstract at
  http://www.quantiki.org/video_abstracts/0906273
On the Bohr inequality
The Bohr inequality, first introduced by Harald Bohr in 1914, deals with
finding the largest radius , , such that  holds whenever  in the unit disk
 of the complex plane. The exact value of this largest radius,
known as the \emph{Bohr radius}, has been established to be  This paper
surveys recent advances and generalizations on the Bohr inequality. It
discusses the Bohr radius for certain power series in  as well as
for analytic functions from  into particular domains. These domains
include the punctured unit disk, the exterior of the closed unit disk, and
concave wedge-domains. The analogous Bohr radius is also studied for harmonic
and starlike logharmonic mappings in  The Bohr phenomenon which is
described in terms of the Euclidean distance is further investigated using the
spherical chordal metric and the hyperbolic metric. The exposition concludes
with a discussion on the -dimensional Bohr radius
Smolyak's algorithm: A powerful black box for the acceleration of scientific computations
We provide a general discussion of Smolyak's algorithm for the acceleration
of scientific computations. The algorithm first appeared in Smolyak's work on
multidimensional integration and interpolation. Since then, it has been
generalized in multiple directions and has been associated with the keywords:
sparse grids, hyperbolic cross approximation, combination technique, and
multilevel methods. Variants of Smolyak's algorithm have been employed in the
computation of high-dimensional integrals in finance, chemistry, and physics,
in the numerical solution of partial and stochastic differential equations, and
in uncertainty quantification. Motivated by this broad and ever-increasing
range of applications, we describe a general framework that summarizes
fundamental results and assumptions in a concise application-independent
manner
Large violation of Bell inequalities with low entanglement
In this paper we obtain violations of general bipartite Bell inequalities of
order  with  inputs,  outputs and
-dimensional Hilbert spaces. Moreover, we construct explicitly, up to a
random choice of signs, all the elements involved in such violations: the
coefficients of the Bell inequalities, POVMs measurements and quantum states.
Analyzing this construction we find that, even though entanglement is necessary
to obtain violation of Bell inequalities, the Entropy of entanglement of the
underlying state is essentially irrelevant in obtaining large violation. We
also indicate why the maximally entangled state is a rather poor candidate in
producing large violations with arbitrary coefficients. However, we also show
that for Bell inequalities with positive coefficients (in particular, games)
the maximally entangled state achieves the largest violation up to a
logarithmic factor.Comment: Reference [16] added. Some typos correcte
Amenability of algebras of approximable operators
We give a necessary and sufficient condition for amenability of the Banach
algebra of approximable operators on a Banach space. We further investigate the
relationship between amenability of this algebra and factorization of
operators, strengthening known results and developing new techniques to
determine whether or not a given Banach space carries an amenable algebra of
approximable operators. Using these techniques, we are able to show, among
other things, the non-amenability of the algebra of approximable operators on
Tsirelson's space.Comment: 20 pages, to appear in Israel Journal of Mathematic
Unbounded violation of tripartite Bell inequalities
We prove that there are tripartite quantum states (constructed from random
unitaries) that can lead to arbitrarily large violations of Bell inequalities
for dichotomic observables. As a consequence these states can withstand an
arbitrary amount of white noise before they admit a description within a local
hidden variable model. This is in sharp contrast with the bipartite case, where
all violations are bounded by Grothendieck's constant. We will discuss the
possibility of determining the Hilbert space dimension from the obtained
violation and comment on implications for communication complexity theory.
Moreover, we show that the violation obtained from generalized GHZ states is
always bounded so that, in contrast to many other contexts, GHZ states do in
this case not lead to extremal quantum correlations. The results are based on
tools from the theories of operator spaces and tensor norms which we exploit to
prove the existence of bounded but not completely bounded trilinear forms from
commutative C*-algebras.Comment: Substantial changes in the presentation to make the paper more
  accessible for a non-specialized reade
Factorization of Operators Through Orlicz Spaces
[EN] We study factorization of operators between quasi-Banach spaces. We prove the equivalence between certain vector norm inequalities and the factorization of operators through Orlicz spaces. As a consequence, we obtain the Maurey-Rosenthal factorization of operators into L-p-spaces. We give several applications. In particular, we prove a variant of Maurey's Extension Theorem.The research of the first author was supported by the National Science Centre (NCN), Poland, Grant No. 2011/01/B/ST1/06243. The research of the second author was supported by Ministerio de Economia y Competitividad, Spain, under project #MTM2012-36740-C02-02Mastylo, M.; Sánchez Pérez, EA. (2017). Factorization of Operators Through Orlicz Spaces. Bulletin of the Malaysian Mathematical Sciences Society. 40(4):1653-1675. https://doi.org/10.1007/s40840-015-0158-5S16531675404Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24, 113–190 (1964)Davis, W.J., Garling, D.J.H., Tomczak-Jaegermann, N.: The complex convexity of quasi-normed linear spaces. J. Funct. Anal. 55, 110–150 (1984)Defant, A.: Variants of the Maurey–Rosenthal theorem for quasi Köthe function spaces. Positivity 5, 153–175 (2001)Defant, A., Mastyło, M., Michels, C.: Orlicz norm estimates for eigenvalues of matrices. Isr. J. Math. 132, 45–59 (2002)Defant, A., Sánchez Pérez, E.A.: Maurey–Rosenthal factorization of positive operators and convexity. J. Math. Anal. Appl. 297, 771–790 (2004)Defant, A., Sánchez Pérez, E.A.: Domination of operators on function spaces. Math. Proc. Camb. Phil. Soc. 146, 57–66 (2009)Diestel, J.: Sequences and Series in Banach Spaces. Springer, Berlin (1984)Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)Dilworth, S.J.: Special Banach lattices and their applications. In: Handbook of the Geometry of Banach Spaces, vol. 1. Elsevier, Amsterdam (2001)Figiel, T., Pisier, G.: Séries alétoires dans les espaces uniformément convexes ou uniformément lisses. Comptes Rendus de l’Académie des Sciences, Paris, Série A 279, 611–614 (1974)Kalton, N.J., Montgomery-Smith, S.J.: Set-functions and factorization. Arch. Math. (Basel) 61(2), 183–200 (1993)Kamińska, A., Mastyło, M.: Abstract duality Sawyer formula and its applications. Monatsh. Math. 151(3), 223–245 (2007)Kantorovich, L.V., Akilov, G.P.: Functional Analysis, 2nd edn. Pergamon Press, Oxford (1982)Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1979)Lozanovskii, G.Ya.: On some Banach lattices IV, Sibirsk. Mat. Z. 14, 140–155 (1973) (in Russian); English transl.: Siberian. Math. J. 14, 97–108 (1973)Lozanovskii, G.Ya.:Transformations of ideal Banach spaces by means of concave functions. In: Qualitative and Approximate Methods for the Investigation of Operator Equations, Yaroslavl, vol. 3, pp. 122–147 (1978) (Russian)Mastyło, M., Szwedek, R.: Interpolative constructions and factorization of operators. J. Math. Anal. Appl. 401, 198–208 (2013)Nikišin, E.M.: Resonance theorems and superlinear operators. Usp. Mat. Nauk 25, 129–191 (1970) (Russian)Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal Domain and Integral Extension of Operators acting in Function Spaces. Operator Theory: Adv. Appl., vol. 180. Birkhäuser, Basel (2008)Pisier, G.: Factorization of linear operators and geometry of Banach spaces. CBMS Regional Conference Series in Mathematics, vol. 60. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1986)Reisner, S.: On two theorems of Lozanovskii concerning intermediate Banach lattices, geometric aspects of functional analysis (1986/87). Lecture Notes in Math., vol. 1317, pp. 67–83. Springer, Berlin (1988)Wojtaszczyk, P.: Banach Spaces for Analysts. Cambridge University Press, Cambridge (1991
The Hilbertian Tensor Norm and Entangled Two-Prover Games
We study tensor norms over Banach spaces and their relations to quantum
information theory, in particular their connection with two-prover games. We
consider a version of the Hilbertian tensor norm  and its dual
 that allow us to consider games with arbitrary output alphabet
sizes. We establish direct-product theorems and prove a generalized
Grothendieck inequality for these tensor norms. Furthermore, we investigate the
connection between the Hilbertian tensor norm and the set of quantum
probability distributions, and show two applications to quantum information
theory: firstly, we give an alternative proof of the perfect parallel
repetition theorem for entangled XOR games; and secondly, we prove a new upper
bound on the ratio between the entangled and the classical value of two-prover
games.Comment: 33 pages, some of the results have been obtained independently in
  arXiv:1007.3043v2, v2: an error in Theorem 4 has been corrected; Section 6
  rewritten, v3: completely rewritten in order to improve readability; title
  changed; references added; published versio
- …
