8,900 research outputs found
Zero-Temperature Limit of the SUSY-breaking Complexity in Diluted Spin-Glass Models
We study the SUSY-breaking complexity of the Bethe Lattice Spin-Glass in the
zero temperature limit. We consider both the Gaussian and the bimodal
distribution of the coupling constants. For the SUSY breaking
theory yields fields distributions that concentrate on integer values at low
temperatures, at variance with the unbroken SUSY theory. This concentration
takes place both in the quenched as well as in the simpler annealed
formulation.Comment: 4 pages, 2 figure
On the structure of correlations in the three dimensional spin glasses
We investigate the low temperature phase of three-dimensional
Edwards-Anderson model with Bernoulli random couplings. We show that at a fixed
value of the overlap the model fulfills the clustering property: the
connected correlation functions between two local overlaps decay as a power
whose exponent is independent of for all . Our findings
are in agreement with the RSB theory and show that the overlap is a good order
parameter.Comment: 5 pages, 5 figure
Preeminent role of the Van Hove singularity in the strong-coupling analysis of scanning tunneling spectroscopy for two-dimensional cuprates
In two dimensions the non-interacting density of states displays a Van Hove
singularity (VHS) which introduces an intrinsic electron-hole asymmetry, absent
in three dimensions. We show that due to this VHS the strong-coupling analysis
of tunneling spectra in high- superconductors must be reconsidered. Based
on a microscopic model which reproduces the experimental data with great
accuracy, we elucidate the peculiar role played by the VHS in shaping the
tunneling spectra, and show that more conventional analyses of strong-coupling
effects can lead to severe errors.Comment: 5 pages, 4 figure
A metabolomic approach to animal vitreous humor topographical composition: A pilot study
The purpose of this study was to evaluate the feasibility of a 1H-NMR-based metabolomic approach to explore the
metabolomic signature of different topographical areas of vitreous humor (VH) in an animal model. Five ocular globes were
enucleated from five goats and immediately frozen at 280uC. Once frozen, three of them were sectioned, and four samples
corresponding to four different VH areas were collected: the cortical, core, and basal, which was further divided into a
superior and an inferior fraction. An additional two samples were collected that were representative of the whole vitreous
body. 1H-NMR spectra were acquired for twenty-three goat vitreous samples with the aim of characterizing the
metabolomic signature of this biofluid and identifying whether any site-specific patterns were present. Multivariate
statistical analysis (MVA) of the spectral data were carried out, including Principal Component Analysis (PCA), Hierarchical
Cluster Analysis (HCA), and Partial Least Squares Discriminant Analysis (PLS-DA). A unique metabolomic signature belonging
to each area was observed. The cortical area was characterized by lactate, glutamine, choline, and its derivatives, N-acetyl
groups, creatine, and glycerol; the core area was characterized by glucose, acetate, and scyllo-inositol; and the basal area
was characterized by branched-chain amino acids (BCAA), betaine, alanine, ascorbate, lysine, and myo-inositol. We propose
a speculative approach on the topographic role of these molecules that are mainly responsible for metabolic differences
among the as-identified areas. 1H-NMR-based metabolomic analysis has shown to be an important tool for investigating the
VH. In particular, this approach was able to assess in the samples here analyzed the presence of different functional areas on
the basis of a different metabolite distribution.The purpose of this study was to evaluate the feasibility of a 1H-NMR-based metabolomic approach to explore the metabolomic signature of different topographical areas of vitreous humor (VH) in an animal model. Five ocular globes were enucleated from five goats and immediately frozen at -80°C. Once frozen, three of them were sectioned, and four samples corresponding to four different VH areas were collected: the cortical, core, and basal, which was further divided into a superior and an inferior fraction. An additional two samples were collected that were representative of the whole vitreous body. 1H-NMR spectra were acquired for twenty-three goat vitreous samples with the aim of characterizing the metabolomic signature of this biofluid and identifying whether any site-specific patterns were present. Multivariate statistical analysis (MVA) of the spectral data were carried out, including Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), and Partial Least Squares Discriminant Analysis (PLS-DA). A unique metabolomic signature belonging to each area was observed. The cortical area was characterized by lactate, glutamine, choline, and its derivatives, N-acetyl groups, creatine, and glycerol; the core area was characterized by glucose, acetate, and scyllo-inositol; and the basal area was characterized by branched-chain amino acids (BCAA), betaine, alanine, ascorbate, lysine, and myo-inositol. We propose a speculative approach on the topographic role of these molecules that are mainly responsible for metabolic differences among the as-identified areas. 1H-NMR-based metabolomic analysis has shown to be an important tool for investigating the VH. In particular, this approach was able to assess in the samples here analyzed the presence of different functional areas on the basis of a different metabolite distribution. © 2014 Locci et al
Phase behavior of wormlike rods
By employing Molecular Dynamics computer simulations, the phase behavior of
systems of rodlike particles with varying degree of internal flexibility has
been traced from the perfectly rigid rod limit till very flexible particles,
and from the high density region till the isotropic phase. From the perfectly
rigid rod limit and enhancing the internal flexibility, the range of the
smectic A phase is squeezed out by the concomitant action of the scarcely
affected crystalline phase at higher density and the nematic phase at lower
density, until it disappears. These results confirm the supposition, drawn from
previous theoretical, simulational and experimental studies, that the smectic A
phase is destabilized by introducing and enhancing the degree of particle
internal flexibility. However, no significant changes in the order of
nematic--to--smectic A phase transition, which appears always first order, nor
in the value of the layer spacing, are observed upon varying the degree of
particle internal flexibility. Moreover, no evidence of a columnar phase, which
was tought of as a possible superseder of the smectic A phase in flexible rods,
has been obtained.Comment: 10 pages, 2 figures, version accepted in Physical Review
Two new intermediate polars with a soft X-ray component
Aims. We analyze the first X-ray observations with XMM-Newton of 1RXS J070407.9+262501 and 1RXS 180340.0+401214, in
order to characterize their broad-band temporal and spectral properties, also in the UV/optical domain, and to confirm them as intermediate polars.
Methods. For both objects, we performed a timing analysis of the X-ray and UV/optical light curves to detect the white dwarf spin pulsations and study their energy dependence. For 1RXS 180340.0+401214 we also analyzed optical spectroscopic data to determine the orbital period. X-ray spectra were analyzed in the 0.2–10.0 keV range to characterize the emission properties of both sources.
Results. We find that the X-ray light curves of both systems are energy dependent and are dominated, below 3–5 keV, by strong pulsations at the white dwarf rotational periods (480 s for 1RXS J070407.9+262501 and 1520.5 s for 1RXS 180340.0+401214). In 1RXS 180340.0+401214 we also detect an X-ray beat variability at 1697 s which, together with our new optical spectroscopy, favours an orbital period of 4.4 h that is longer than previously estimated. Both systems show complex spectra with a hard (temperature up to 40 keV) optically thin and a soft (kT ∼ 85–100 eV) optically thick components heavily absorbed by material partially covering the X-ray sources.
Conclusions. Our observations confirm the two systems as intermediate polars and also add them as new members of the growing group of “soft” systems which show the presence of a soft X-ray blackbody component. Differences in the temperatures of the blackbodies are qualitatively explained in terms of reprocessing over different sizes of the white dwarf spot. We suggest that systems showing cooler soft X-ray blackbody components also possess white dwarfs irradiated by cyclotron radiation
Extended endoscopic endonasal transsphenoidal approach to the suprasellar area: Anatomic considerations - Part I
INTRODUCTION: Interest in using the extended endonasal transsphenoidal approach for management of suprasellar lesions, with either a microscopic or endoscopic technique, has increased in recent years. The most relevant benefit is that this median approach permits the exposure and removal of suprasellar lesions without the need for brain retraction. MATERIALS AND METHODS: Fifteen human cadaver heads were dissected to evaluate the surgical key steps and the advantages and limitations of the extended endoscopic endonasal transplanum sphenoidale approach. We compared this with the transcranial microsurgical view of the suprasellar area as explored using the bilateral subfrontal microsurgical approach, and with the anatomy of the same region as obtained through the endoscopic endonasal route. RESULTS: Some anatomic conditions can prevent or hinder use of the extended endonasal approach. These include a low level of sphenoid sinus pneumatization, a small sella size with small distance between the internal carotid arteries, a wide intercavernous sinus, and a thick tuberculum sellae. Compared with the subfrontal transcranial approach, the endoscopic endonasal approach offers advantages to visualizing the subchiasmatic, retrosellar, and third ventricle areas. CONCLUSION: The endoscopic endonasal transplanum sphenoidale technique is a straight, median approach to the midline areas around the sella that provides a multiangled, close-up view of all relevant neurovascular structures. Although a lack of adequate instrumentation makes it impossible to manage all structures that are visible with the endoscope, in selected cases, the extended endoscopic endonasal approach can be considered part of the armamentarium for surgical treatment of the suprasellar area
The deleterious effect of arteriovenous flow reversal during experimental free muscle transfer.
Arteriovenous flow reversal (AVR) has been used experimentally to salvage ischemic limbs and to create novel skin flaps with some success. The clinical applicability of AVR in muscle by way of two arteriovenous anastomoses in the rabbit was investigated. Twenty-four rabbits were divided into two groups. In Group 1 (control), the rectus femoris muscle was harvested and transplanted in the opposite thigh, anastomosing the donor femoral artery to the recipient femoral artery, and the donor rectus femoris vein to the recipient femoral vein. In Group 2 (flow reversal), the same procedure was done except the donor artery was anastomosed to the recipient vein and vice versa. Six and 24 hr postoperatively, specimens were compared macroscopically and by weight and histology. Reversed flow muscles were significantly heavier than control muscles at 6 hr and at 24 hr. Histologically, 6 hr of AVR caused edema, intramuscular hemorrhage, neutrophil infiltration, and thrombosis of most vessels. By 24 hr muscle cell degeneration was well advanced. All control muscles were viable, with only mild edema and slight peripheral necrosis. Possible reasons for the failure of AVR in muscle are discussed. On the basis of these results, AVR in free muscle transfer is not advocated
Finite dimensional corrections to mean field in a short-range p-spin glassy model
In this work we discuss a short range version of the -spin model. The
model is provided with a parameter that allows to control the crossover with
the mean field behaviour. We detect a discrepancy between the perturbative
approach and numerical simulation. We attribute it to non-perturbative effects
due to the finite probability that each particular realization of the disorder
allows for the formation of regions where the system is less frustrated and
locally freezes at a higher temperature.Comment: 18 pages, 5 figures, submitted to Phys Rev
- …