1,217 research outputs found

    Which canonical algebras are derived equivalent to incidence algebras of posets?

    Full text link
    We give a full description of all the canonical algebras over an algebraically closed field that are derived equivalent to incidence algebras of finite posets. These are the canonical algebras whose number of weights is either 2 or 3.Comment: 8 pages; slight revision; to appear in Comm. Algebr

    Optimal Renormalization Group Transformation from Information Theory

    Full text link
    Recently a novel real-space RG algorithm was introduced, identifying the relevant degrees of freedom of a system by maximizing an information-theoretic quantity, the real-space mutual information (RSMI), with machine learning methods. Motivated by this, we investigate the information theoretic properties of coarse-graining procedures, for both translationally invariant and disordered systems. We prove that a perfect RSMI coarse-graining does not increase the range of interactions in the renormalized Hamiltonian, and, for disordered systems, suppresses generation of correlations in the renormalized disorder distribution, being in this sense optimal. We empirically verify decay of those measures of complexity, as a function of information retained by the RG, on the examples of arbitrary coarse-grainings of the clean and random Ising chain. The results establish a direct and quantifiable connection between properties of RG viewed as a compression scheme, and those of physical objects i.e. Hamiltonians and disorder distributions. We also study the effect of constraints on the number and type of coarse-grained degrees of freedom on a generic RG procedure.Comment: Updated manuscript with new results on disordered system

    Deep levels in a-plane, high Mg-content MgxZn1-xO epitaxial layers grown by molecular beam epitaxy

    Get PDF
    Deep level defects in n-type unintentionally doped a-plane MgxZn1−xO, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of MgxZn1−xO were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of Ec − 1.4 eV, 2.1 eV, 2.6 V, and Ev + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at Ec − 2.1 eV, Ev + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at Ev + 0.3 eV and Ec − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the Ev + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the Ec − 1.4 eV and Ec − 2.6 eV levels in Mg alloyed samples

    Making history: intentional capture of future memories

    Get PDF
    Lifelogging' technology makes it possible to amass digital data about every aspect of our everyday lives. Instead of focusing on such technical possibilities, here we investigate the way people compose long-term mnemonic representations of their lives. We asked 10 families to create a time capsule, a collection of objects used to trigger remembering in the distant future. Our results show that contrary to the lifelogging view, people are less interested in exhaustively digitally recording their past than in reconstructing it from carefully selected cues that are often physical objects. Time capsules were highly expressive and personal, many objects were made explicitly for inclusion, however with little object annotation. We use these findings to propose principles for designing technology that supports the active reconstruction of our future past

    Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bends

    Full text link
    We study the following classes of beyond-planar graphs: 1-planar, IC-planar, and NIC-planar graphs. These are the graphs that admit a 1-planar, IC-planar, and NIC-planar drawing, respectively. A drawing of a graph is 1-planar if every edge is crossed at most once. A 1-planar drawing is IC-planar if no two pairs of crossing edges share a vertex. A 1-planar drawing is NIC-planar if no two pairs of crossing edges share two vertices. We study the relations of these beyond-planar graph classes (beyond-planar graphs is a collective term for the primary attempts to generalize the planar graphs) to right-angle crossing (RAC) graphs that admit compact drawings on the grid with few bends. We present four drawing algorithms that preserve the given embeddings. First, we show that every nn-vertex NIC-planar graph admits a NIC-planar RAC drawing with at most one bend per edge on a grid of size O(n)×O(n)O(n) \times O(n). Then, we show that every nn-vertex 1-planar graph admits a 1-planar RAC drawing with at most two bends per edge on a grid of size O(n3)×O(n3)O(n^3) \times O(n^3). Finally, we make two known algorithms embedding-preserving; for drawing 1-planar RAC graphs with at most one bend per edge and for drawing IC-planar RAC graphs straight-line

    Contact Representations of Graphs in 3D

    Full text link
    We study contact representations of graphs in which vertices are represented by axis-aligned polyhedra in 3D and edges are realized by non-zero area common boundaries between corresponding polyhedra. We show that for every 3-connected planar graph, there exists a simultaneous representation of the graph and its dual with 3D boxes. We give a linear-time algorithm for constructing such a representation. This result extends the existing primal-dual contact representations of planar graphs in 2D using circles and triangles. While contact graphs in 2D directly correspond to planar graphs, we next study representations of non-planar graphs in 3D. In particular we consider representations of optimal 1-planar graphs. A graph is 1-planar if there exists a drawing in the plane where each edge is crossed at most once, and an optimal n-vertex 1-planar graph has the maximum (4n - 8) number of edges. We describe a linear-time algorithm for representing optimal 1-planar graphs without separating 4-cycles with 3D boxes. However, not every optimal 1-planar graph admits a representation with boxes. Hence, we consider contact representations with the next simplest axis-aligned 3D object, L-shaped polyhedra. We provide a quadratic-time algorithm for representing optimal 1-planar graph with L-shaped polyhedra

    Structural investigation of MOVPE-Grown GaAs on Ge by X-ray techniques

    Get PDF
    The selection of appropriate characterisation methodologies is vital for analysing and comprehending the sources of defects and their influence on the properties of heteroepitaxially grown III-V layers. In this work we investigate the structural properties of GaAs layers grown by Metal-Organic Vapour Phase Epitaxy (MOVPE) on Ge substrates – (100) with 6⁰ offset towards – under various growth conditions. Synchrotron X-ray topography (SXRT) is employed to investigate the nature of extended linear defects formed in GaAs epilayers. Other X-ray techniques, such as reciprocal space mapping (RSM) and triple axis ω-scans of (00l)-reflections (l = 2, 4, 6) are used to quantify the degree of relaxation and presence of antiphase domains (APDs) in the GaAs crystals. The surface roughness is found to be closely related to the size of APDs formed at the GaAs/Ge heterointerface, as confirmed by X-ray diffraction (XRD), as well as atomic force microscopy (AFM), and transmission electron microscopy (TEM)

    LR characterization of chirotopes of finite planar families of pairwise disjoint convex bodies

    Full text link
    We extend the classical LR characterization of chirotopes of finite planar families of points to chirotopes of finite planar families of pairwise disjoint convex bodies: a map \c{hi} on the set of 3-subsets of a finite set I is a chirotope of finite planar families of pairwise disjoint convex bodies if and only if for every 3-, 4-, and 5-subset J of I the restriction of \c{hi} to the set of 3-subsets of J is a chirotope of finite planar families of pairwise disjoint convex bodies. Our main tool is the polarity map, i.e., the map that assigns to a convex body the set of lines missing its interior, from which we derive the key notion of arrangements of double pseudolines, introduced for the first time in this paper.Comment: 100 pages, 73 figures; accepted manuscript versio

    Scattering of massless particles in one-dimensional chiral channel

    Full text link
    We present a general formalism describing a propagation of an arbitrary multiparticle wave packet in a one-dimensional multimode chiral channel coupled to an ensemble of emitters which are distributed at arbitrary positions. The formalism is based on a direct and exact resummation of diagrammatic series for the multiparticle scattering matrix. It is complimentary to the Bethe Ansatz and to approaches based on equations of motion, and it reveals a simple and transparent structure of scattering states. In particular, we demonstrate how this formalism works on various examples, including scattering of one- and two-photon states off two- and three-level emitters, off an array of emitters as well as scattering of coherent light. We argue that this formalism can be constructively used for study of scattering of an arbitrary initial photonic state off emitters with arbitrary degree of complexity.Comment: 25 pages, 5 figure

    Tilted algebras and short chains of modules

    Get PDF
    We provide an affirmative answer for the question raised almost twenty years ago concerning the characterization of tilted artin algebras by the existence of a sincere finitely generated module which is not the middle of a short chain
    corecore