134 research outputs found

    Hindered Coulomb explosion of embedded Na clusters -- stopping, shape dynamics and energy transport

    Full text link
    We investigate the dynamical evolution of a Na8_8 cluster embedded in Ar matrices of various sizes from N=30 to 1048. The system is excited by an intense short laser pulse leading to high ionization stages. We analyze the subsequent highly non-linear motion of cluster and Ar environment in terms of trajectories, shapes, and energy flow. The most prominent effects are: temporary stabilization of high charge states for several ps, sudden stopping of the Coulomb explosion of the embedded Na8_8 clusters associated with an extremely fast energy transfer to the Ar matrix, fast distribution of energy throughout the Ar layers by a sound wave. Other ionic-atomic transfer and relaxation processes proceed at slower scale of few ps. The electron cloud is almost thermally decoupled from ions and thermalizes far beyond the ps scale.Comment: 12 pages, 10 figures, accepted in Euro. Phys. J.

    Evolution of electronic and ionic structure of Mg-clusters with the growth cluster size

    Get PDF
    The optimized structure and electronic properties of neutral and singly charged magnesium clusters have been investigated using ab initio theoretical methods based on density-functional theory and systematic post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. We have systematically calculated the optimized geometries of neutral and singly charged magnesium clusters consisting of up to 21 atoms, electronic shell closures, binding energies per atom, ionization potentials and the gap between the highest occupied and the lowest unoccupied molecular orbitals. We have investigated the transition to the hcp structure and metallic evolution of the magnesium clusters, as well as the stability of linear chains and rings of magnesium atoms. The results obtained are compared with the available experimental data and the results of other theoretical works.Comment: 30 pages, 10 figures, 3 table

    High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion

    Get PDF
    Diamond formation in polystyrene (C8H8)n, which is laser-compressed and heated to conditions around 150 GPa and 5000 K, has recently been demonstrated in the laboratory [Kraus et al., Nat. Astron. 1, 606–611 (2017)]. Here, we show an extended analysis and comparison to first-principles simulations of the acquired data and their implications for planetary physics and inertial confinement fusion. Moreover, we discuss the advanced diagnostic capabilities of adding high-quality small angle X-ray scattering and spectrally resolved X-ray scattering to the platform, which shows great prospects of precisely studying the kinetics of chemical reactions in dense plasma environments at pressures exceeding 100 GPa

    Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility

    Get PDF
    An accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T[subscript ion] are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD T[subscript ion] are observed and the difference is seen to increase with increasing apparent DT T[subscript ion]. The line-of-sight rms variations of both DD and DT T[subscript ion] are small, ∌ 150 eV, indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed T[subscript ion]. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT T[subscript ion] greater than the DD T[subscript ion], but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.Lawrence Livermore National Laboratory (Contract No. DE-AC52- 07NA27344

    Electron-ion temperature relaxation in warm dense hydrogen observed with picosecond resolved X-Ray scattering

    Get PDF
    Angularly resolved X-ray scattering measurements from fs-laser heated hydrogen have been used to determine the equilibration of electron and ion temperatures in the warm dense matter regime. The relaxation of rapidly heated cryogenic hydrogen is visualized using 5.5 keV X-ray pulses from the Linac Coherent Light (LCLS) source in a 1 Hz repetition rate pump-probe setting. We demonstrate that the electron-ion energy transfer is faster than quasi-classical Landau-Spitzer models that use ad hoc cutoffs in the Coulomb logarithm

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF
    • 

    corecore