158 research outputs found

    Total Selfie: Generating Full-Body Selfies

    Full text link
    We present a method to generate full-body selfies from photographs originally taken at arms length. Because self-captured photos are typically taken close up, they have limited field of view and exaggerated perspective that distorts facial shapes. We instead seek to generate the photo some one else would take of you from a few feet away. Our approach takes as input four selfies of your face and body, a background image, and generates a full-body selfie in a desired target pose. We introduce a novel diffusion-based approach to combine all of this information into high-quality, well-composed photos of you with the desired pose and background.Comment: Project page: https://homes.cs.washington.edu/~boweiche/project_page/totalselfie

    Detection of BRAF Mutations on Direct Smears of Thyroid Fine Needle Aspirates through Cell Transfer Technique

    Get PDF
    Objectives: To determine the utility of the cell transfer technique (CTT) for BRAF molecular testing on thyroid fine-needle aspiration (FNA) specimens. Methods: Polymerase chain reaction (PCR)–based BRAF molecular testing was performed on tissues obtained through CTT from both air-dried and ethanol-fixed direct smears of thyroid FNA specimens and then compared with the corresponding thyroidectomy formalin-fixed, paraffin-embedded (FFPE) tissues on 30 cases. Results: BRAF testing was successfully performed on 29 of 30 air-dried CTT, 27 of 30 ethanol-fixed CTT, and 27 of 30 FFPE tissues. The results exhibited 11, 13, and 13 BRAF mutations and 18, 14, and 14 wild types for the air-dried CTT, the ethanol-fixed CTT, and the FFPE tissues, respectively. The concordance rate was 96% between air-dried and ethanol-fixed CTT tissues, 88% between air-dried CTT and FFPE tissues, and 92% between ethanol-fixed CTT and FFPE tissues. Conclusions: PCR-based BRAF mutational testing can be reliably performed on the direct smears of the thyroid FNA specimens through the application of CTT

    Principal component and Voronoi skeleton alternatives for curve reconstruction from noisy point sets

    Get PDF
    Surface reconstruction from noisy point samples must take into consideration the stochastic nature of the sample -- In other words, geometric algorithms reconstructing the surface or curve should not insist in following in a literal way each sampled point -- Instead, they must interpret the sample as a “point cloud” and try to build the surface as passing through the best possible (in the statistical sense) geometric locus that represents the sample -- This work presents two new methods to find a Piecewise Linear approximation from a Nyquist-compliant stochastic sampling of a quasi-planar C1 curve C(u) : R → R3, whose velocity vector never vanishes -- One of the methods articulates in an entirely new way Principal Component Analysis (statistical) and Voronoi-Delaunay (deterministic) approaches -- It uses these two methods to calculate the best possible tape-shaped polygon covering the planarised point set, and then approximates the manifold by the medial axis of such a polygon -- The other method applies Principal Component Analysis to find a direct Piecewise Linear approximation of C(u) -- A complexity comparison of these two methods is presented along with a qualitative comparison with previously developed ones -- It turns out that the method solely based on Principal Component Analysis is simpler and more robust for non self-intersecting curves -- For self-intersecting curves the Voronoi-Delaunay based Medial Axis approach is more robust, at the price of higher computational complexity -- An application is presented in Integration of meshes originated in range images of an art piece -- Such an application reaches the point of complete reconstruction of a unified mes

    High Throughput and Reliability (HITaR)

    Get PDF

    Influences on pre-hospital delay in the diagnosis of colorectal cancer: a systematic review

    Get PDF
    Colorectal cancer is a major global health problem, with survival varying according to stage at diagnosis. Delayed diagnosis can result from patient, practitioner or hospital delay. This paper reports the results of a review of the factors influencing pre-hospital delay – the time between a patient first noticing a cancer symptom and presenting to primary care or between first presentation and referral to secondary care. A systematic methodology was applied, including extensive searches of the literature published from 1970 to 2003, systematic data extraction, quality assessment and narrative data synthesis. Fifty-four studies were included. Patients' non-recognition of symptom seriousness increased delay, as did symptom denial. Patient delay was greater for rectal than colon cancers and the presence of more serious symptoms, such as pain, reduced delay. There appears to be no relationship between delay and patients' age, sex or socioeconomic status. Initial misdiagnosis, inadequate examination and inaccurate investigations increased practitioner delay. Use of referral guidelines may reduce delay, although evidence is currently limited. No intervention studies were identified. If delayed diagnosis is to be reduced, there must be increased recognition of the significance of symptoms among patients, and development and evaluation of interventions that are designed to ensure appropriate diagnosis and examination by practitioners
    corecore