567 research outputs found
Spiral Defect Chaos in Large Aspect Ratio Rayleigh-Benard Convection
We report experiments on convection patterns in a cylindrical cell with a
large aspect ratio. The fluid had a Prandtl number of approximately 1. We
observed a chaotic pattern consisting of many rotating spirals and other
defects in the parameter range where theory predicts that steady straight rolls
should be stable. The correlation length of the pattern decreased rapidly with
increasing control parameter so that the size of a correlated area became much
smaller than the area of the cell. This suggests that the chaotic behavior is
intrinsic to large aspect ratio geometries.Comment: Preprint of experimental paper submitted to Phys. Rev. Lett. May 12
1993. Text is preceeded by many TeX macros. Figures 1 and 2 are rather lon
Wavy stripes and squares in zero P number convection
A simple model to explain numerically observed behaviour of chaotically
varying stripes and square patterns in zero Prandtl number convection in
Boussinesq fluid is presented. The nonlinear interaction of mutually
perpendicular sets of wavy rolls, via higher mode, may lead to a competition
between the two sets of wavy rolls. The appearance of square patterns is due to
the secondary forward Hopf bifurcation of a set of wavy rolls.Comment: 8 pages and 3 figures, late
Collaborative coupling between polymerase and helicase for leading-strand synthesis
Rapid and processive leading-strand DNA synthesis in the bacteriophage T4 system requires functional coupling between the helicase and the holoenzyme, consisting of the polymerase and trimeric clamp loaded by the clamp loader. We investigated the mechanism of this coupling on a DNA hairpin substrate manipulated by a magnetic trap. In stark contrast to the isolated enzymes, the coupled system synthesized DNA at the maximum rate without exhibiting fork regression or pauses. DNA synthesis and unwinding activities were coupled at low forces, but became uncoupled displaying separate activities at high forces or low dNTP concentration. We propose a collaborative model in which the helicase releases the fork regression pressure on the holoenzyme allowing it to adopt a processive polymerization conformation and the holoenzyme destabilizes the first few base pairs of the fork thereby increasing the efficiency of helicase unwinding. The model implies that both enzymes are localized at the fork, but does not require a specific interaction between them. The model quantitatively reproduces homologous and heterologous coupling results under various experimental conditions
Mechanism of strand displacement synthesis by DNA replicative polymerases
Replicative holoenzymes exhibit rapid and processive primer extension DNA synthesis, but inefficient strand displacement DNA synthesis. We investigated the bacteriophage T4 and T7 holoenzymes primer extension activity and strand displacement activity on a DNA hairpin substrate manipulated by a magnetic trap. Holoenzyme primer extension activity is moderately hindered by the applied force. In contrast, the strand displacement activity is strongly stimulated by the applied force; DNA polymerization is favoured at high force, while a processive exonuclease activity is triggered at low force. We propose that the DNA fork upstream of the holoenzyme generates a regression pressure which inhibits the polymerization-driven forward motion of the holoenzyme. The inhibition is generated by the distortion of the template strand within the polymerization active site thereby shifting the equilibrium to a DNA-protein exonuclease conformation. We conclude that stalling of the holoenzyme induced by the fork regression pressure is the basis for the inefficient strand displacement synthesis characteristic of replicative polymerases. The resulting processive exonuclease activity may be relevant in replisome disassembly to reset a stalled replication fork to a symmetrical situation. Our findings offer interesting applications for single-molecule DNA sequencing
Quasiperiodic waves at the onset of zero Prandtl number convection with rotation
We show the possibility of quasiperiodic waves at the onset of thermal
convection in a thin horizontal layer of slowly rotating zero-Prandtl number
Boussinesq fluid confined between stress-free conducting boundaries. Two
independent frequencies emerge due to an interaction between a stationary
instability and a self-tuned wavy instability in presence of coriolis force, if
Taylor number is raised above a critical value. Constructing a dynamical system
for the hydrodynamical problem, the competition between the interacting
instabilities is analyzed. The forward bifurcation from the conductive state is
self-tuned.Comment: 9 pages of text (LaTex), 5 figures (Jpeg format
Whirling Hexagons and Defect Chaos in Hexagonal Non-Boussinesq Convection
We study hexagon patterns in non-Boussinesq convection of a thin rotating
layer of water. For realistic parameters and boundary conditions we identify
various linear instabilities of the pattern. We focus on the dynamics arising
from an oscillatory side-band instability that leads to a spatially disordered
chaotic state characterized by oscillating (whirling) hexagons. Using
triangulation we obtain the distribution functions for the number of pentagonal
and heptagonal convection cells. In contrast to the results found for defect
chaos in the complex Ginzburg-Landau equation and in inclined-layer convection,
the distribution functions can show deviations from a squared Poisson
distribution that suggest non-trivial correlations between the defects.Comment: 4 mpg-movies are available at
http://www.esam.northwestern.edu/~riecke/lit/lit.html submitted to New J.
Physic
Power-Law Behavior of Power Spectra in Low Prandtl Number Rayleigh-Benard Convection
The origin of the power-law decay measured in the power spectra of low
Prandtl number Rayleigh-Benard convection near the onset of chaos is addressed
using long time numerical simulations of the three-dimensional Boussinesq
equations in cylindrical domains. The power-law is found to arise from
quasi-discontinuous changes in the slope of the time series of the heat
transport associated with the nucleation of dislocation pairs and roll
pinch-off events. For larger frequencies, the power spectra decay exponentially
as expected for time continuous deterministic dynamics.Comment: (10 pages, 6 figures
Global stability properties of a hyperbolic system arising in pattern formation
Global stability properties of a hyperbolic system arising in pattern formatio
Influence of through-flow on linear pattern formation properties in binary mixture convection
We investigate how a horizontal plane Poiseuille shear flow changes linear
convection properties in binary fluid layers heated from below. The full linear
field equations are solved with a shooting method for realistic top and bottom
boundary conditions. Through-flow induced changes of the bifurcation thresholds
(stability boundaries) for different types of convective solutions are deter-
mined in the control parameter space spanned by Rayleigh number, Soret coupling
(positive as well as negative), and through-flow Reynolds number. We elucidate
the through-flow induced lifting of the Hopf symmetry degeneracy of left and
right traveling waves in mixtures with negative Soret coupling. Finally we
determine with a saddle point analysis of the complex dispersion relation of
the field equations over the complex wave number plane the borders between
absolute and convective instabilities for different types of perturbations in
comparison with the appropriate Ginzburg-Landau amplitude equation
approximation. PACS:47.20.-k,47.20.Bp, 47.15.-x,47.54.+rComment: 19 pages, 15 Postscript figure
Principle of Maximum Entropy Applied to Rayleigh-B\'enard Convection
A statistical-mechanical investigation is performed on Rayleigh-B\'enard
convection of a dilute classical gas starting from the Boltzmann equation. We
first present a microscopic derivation of basic hydrodynamic equations and an
expression of entropy appropriate for the convection. This includes an
alternative justification for the Oberbeck-Boussinesq approximation. We then
calculate entropy change through the convective transition choosing mechanical
quantities as independent variables. Above the critical Rayleigh number, the
system is found to evolve from the heat-conducting uniform state towards the
convective roll state with monotonic increase of entropy on the average. Thus,
the principle of maximum entropy proposed for nonequilibrium steady states in a
preceding paper is indeed obeyed in this prototype example. The principle also
provides a natural explanation for the enhancement of the Nusselt number in
convection.Comment: 13 pages, 4 figures; typos corrected; Eq. (66a) corrected to remove a
double counting for ; Figs. 1-4 replace
- …