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Power-Law Behavior of Power Spectra in Low Prandtl Number Rayleigh-Bénard Convection

M. R. Paul* and M. C. Cross
Department of Physics, California Institute of Technology 114-36, Pasadena, California 91125

P. F. Fischer
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439

H. S. Greenside
Department of Physics, Duke University, Durham, North Carolina 27706

(Received 2 May 2001; published 25 September 2001)

The origin of the power-law decay measured in the power spectra of low Prandtl number Rayleigh-
Bénard convection near the onset of chaos is addressed using long time numerical simulations of the
three-dimensional Boussinesq equations in cylindrical domains. The power law is found to arise from
quasidiscontinuous changes in the slope of the time series of the heat transport associated with the
nucleation of dislocation pairs and roll pinch-off events. For larger frequencies, the power spectra decay
exponentially as expected for time continuous deterministic dynamics.
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Significant insight into the onset of chaotic dynamics
in fluid systems, and continuum systems in general, has
been gained from cryogenic Rayleigh-Bénard convection
experiments [1–4]; for a review, see [5,6]. Two of the most
dramatic discoveries were the observation of time depen-
dence almost immediately above the onset of convective
flow, and the power-law falloff in frequency for the power
spectral density derived from time series of a global mea-
surement of the temperature difference across the fluid at
fixed heat flow [1]. However, these and other important
observations remain poorly understood although further in-
sight has been gained from room temperature argon experi-
ments allowing flow visualization [7–9]. The power-law
behavior is unexpected, since bounded deterministic mod-
els typically show an exponential falloff at high frequency
[10]. Phenomenological stochastic models were proposed
to explain the spectra [11,12], but no understanding of the
origin of the ad hoc stochastic driving has followed.

In this Letter, we use numerical simulations of the three-
dimensional Boussinesq equations for the fluid flow and
heat transport in the cylindrical geometries of the experi-
ments with realistic boundary conditions to investigate the
power spectrum in more detail. The numerical simulations
allow us to determine the spatial structure of the flow field
in the aperiodic dynamics, and the absence of experimen-
tal or measurement noise provides us with more complete
results for the power spectra. Our completely deterministic
simulations yield results consistent with the experimental
observations, including a power-law falloff of the power
spectrum over the range accessible to the experiment. Us-
ing knowledge of the flow field, we are able to associate
this power-law behavior with specific events in the dynam-
ics, namely, the creation and annihilation of defects in the
convection roll structure, which occur on a time scale rapid
compared with the slow pattern evolution. At higher fre-
quencies, the power spectra decay exponentially, consis-
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tent with the behavior expected for smooth deterministic
time evolution. The low amplitude region of the spectra
was inaccessible experimentally due to the noise floor.

Our simulations in a cylindrical geometry are performed
using an efficient spectral element algorithm (described in
detail elsewhere [13]). The velocity �u, temperature T , and
pressure p evolve according to the Boussinesq equations,

s21�≠t 1 �u ? �=� �u � 2 �=p 1 RTẑ 1 =2 �u ,

�≠t 1 �u ? �=�T � =2T ,

�= ? �u � 0 ,

where ≠t indicates time differentiation, ẑ is a unit vector in
the vertical direction, s is the Prandtl number, and R is the
Rayleigh number. The equations are nondimensionalized
in the standard manner using the layer depth h, the vertical
diffusion time for heat ty , and the constant temperature
difference across the layer DT , as the length, time, and
temperature scales, respectively. All variables in the fol-
lowing discussion are nondimensional using this scaling.
The lower and upper surfaces (z � 0, 1� are no slip and
are held at constant temperature. The sidewalls are no slip
and perfectly conducting [14], and the initial conditions are
small random thermal perturbations of magnitude 0.2 im-
posed upon an otherwise quiescent layer, �u � 0, T � 0.

In nearly all cryogenic experiments, for reasons of in-
creased experimental resolution, the heat flux across the
convection layer, Q, and the temperature of either the up-
per or lower surface are held constant while measurements
of DT�t� are made. These measurements are reported as
R�t��Rc or DT�t��DTc , where DTc is the temperature dif-
ference across the layer and Rc is the Rayleigh number at
the convective threshold. Theoretical calculations, on the
other hand, most often consider both the upper and lower
surfaces to be held at constant temperature and observe the
© 2001 The American Physical Society 154501-1
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time dependence in Q�t�, which can be reported as a time
series of the Nusselt number N�t� (the normalized heat
current through the fluid layer). It has been shown experi-
mentally that fixing Q or fixing DT does not appear to
change the flow dynamics, and the conclusions from mea-
surements of R�t� at fixed N or N �t� at fixed R will be
similar [16].

In order to make contact with experiment [3,16,17] we
focus our discussion on simulations with aspect ratio G �
4.72 (G � r�h, r is the radius), s � 0.78 (experimen-
tal fluid was nonsuperfluid He4), and constant DT . A
key result of the experiments was the observation that the
power spectrum, P�n�, of measured R�t� values exhibited
the power-law behavior, P�n� � n2n, n � 24.0 6 0.2
over the frequency range 0.5 & n & 9 [17] (results were
reported for e � 3.62, where e � �R 2 Rc��Rc is the re-
duced Rayleigh number).

Six representative time series N�t� from our simula-
tions are shown in Fig. 1. In terms of the horizontal
diffusion time for heat th �th � G2ty �, the simulation
times are tf � 100th [tf � 50th for case (vi)], which
is comparable with the longest experiments, tf � 65th

(with one long run for tf � 135th) [3]. This is consid-
erably longer than Gth, which has been suggested as the
earliest time scale for the flow field to reach equilibrium
[18]. However, as discussed below, we find that the dy-
namics can occur on even longer time scales. The simu-
lated time-averaged values of N 2 1 are within 5.5%
of the experimental values given by N 2 1 � 1.034b 1
0.981b3 2 0.866b5, b � 1 2 Rc�R [1]. Spatial and
temporal resolution studies have been performed to en-
sure the accuracy of the calculated values of N �t� for the
chosen simulation parameters.

We now consider the periodic time series in more detail,
case (ii) in Fig. 1. To determine the influence of the pattern
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FIG. 1. Plots of the dimensionless heat transport N�t� for cases
(i–vi) for reduced Rayleigh number e � 0.557, 0.614, 0.8, 1.0,
1.5, and 3.0, respectively. For cases (i–v), Dt � 0.01, and for
case (vi), Dt � 0.005 (Dt is the time step).
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dynamics on the power spectrum, we used a sliding win-
dow in time to calculate successive time-localized power
spectra (a spectrogram) as shown in the lower panel of
Fig. 2. Most of the power in the spectra can be attributed
to nucleation of dislocation pairs (and, to a lesser extent,
dislocation annihilation). A plot of P�n� at a particular
time (a vertical slice of the lower panel of Fig. 2) yields
the windowed power spectrum centered about that point
in time in the upper panel of Fig. 2. Figure 3 shows three
such power spectra from the spectrogram evaluated with
windows centered on (a), (d), and (e) corresponding to dis-
location nucleation, annihilation, and glide, respectively.
The local power spectrum centered on the nucleation of a
dislocation pair generates a power-law region of significant
magnitude; the local power spectrum centered on the dis-
location annihilation generates a power-law region that is a
factor of 10 smaller in magnitude, whereas the local power
spectrum calculated during dislocation glide falls off more
rapidly with n and does not make a significant contribu-
tion. The origin of the power law is the time signature of
the nucleation of a dislocation pair manifested in the qua-
sidiscontinuous slope of N during the rapid excursion to
a state of decreased heat transfer (an individual event is
shown in Fig. 4). Note that a triangular feature with dis-
continuous changes in the slope yields a n24 asymptotic
behavior in the power spectrum.

The power spectra of the remaining time series in Fig. 1
yield a power-law region P�n� � n24 because the dynam-
ics (periodic, quasiperiodic, and chaotic) are dominated
by the nucleation of dislocation pairs and roll pinch-off
events. The differences between the chaotic and periodic
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FIG. 2. Time series N�t� (top) and corresponding spectrogram
(bottom) for one period of case (ii). The labels a f repre-
sent particular moments in the evolution of the pattern and are
discussed in the text. The spectrogram displays 9 orders of mag-
nitude of the power, P�n�, with the smallest and largest contours
labeled; the remaining contours each differ by a factor of 10.
The spectrogram was calculated using a sliding Hann window of
width Dt � 20.48 and linearly detrended overlapping segments
(segments overlap by t � 20.0).
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FIG. 3. Windowed power spectra. The power spectra labeled
(a), (d), and (e) are vertical slices of the spectrogram taken
at representative times for case (ii) at dislocation nucleation,
dislocation annihilation, and dislocation glide, respectively. The
curves labeled (ii) and (vi) are the average of the windowed
power spectra using the entire spectrogram for cases (ii) and
(vi). The dashed lines represent P�n� � n24.

dynamics are apparent in the low-frequency region and are
more apparent on a log-linear plot of P�n�. For example,
Fig. 4 shows the similarity between N�t� for the periodic
simulation, case (ii), and the chaotic simulation, case (vi).
The dynamics in the chaotic state are much more compli-
cated; however, they are dominated by the roll pinch-off
events that maintain the characteristic quasidiscontinuous
slope of N , yielding a power-law region in the power spec-
trum. A comparison of the power spectra for the periodic
and chaotic time series is shown in Fig. 3.

The average of the windowed power spectra of Fig. 3
eventually exhibit an exponential decay, which continues
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FIG. 4. A closeup of the time series N�t�, illustrating the sig-
nature of a nucleation of a dislocation pair for case (ii) (solid
line), and the signature of a roll pinch-off for case (vi) (dashed
line). Time t� is measured as t� � �t 2 ti��Dt; ti denotes when
the event begins, and Dt is the duration of the event. For the
events shown, ti � 587, 270.5 and Dt � 18, 1.5 for cases (ii)
and (vi), respectively.
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until reaching the spectrum floor; this is shown for case (ii)
in Fig. 5. Exponential decay in the power spectra at high
frequency is expected for bounded smooth deterministic
dynamics [10]. The exponential decay in the power spectra
was not detected in experiment due to the presence of
instrumental noise which masked the small scale region.

In the cryogenic experiments, flow visualization was not
possible leaving the precise details of the underlying pat-
tern uncertain. With this in mind, we briefly discuss the
dynamics represented in Fig. 1. Case (i) illustrates a time-
independent Pan-Am pattern similar to panel (a) of Fig. 6.
Case (ii) is periodic with period t � 8.4th (note the ini-
tial transient lasting 27th); the dynamics of one period
are illustrated in Figs. 2 and 6. Figure 6 displays the pat-
tern at six different instances in time corresponding to
the events labeled in the upper panel of Fig. 2. Initially
there is a Pan-Am pattern with two opposing wall foci
causing roll compression �a�, eventually nucleating a dis-
location pair in the center of the domain �b�. The dis-
locations quickly climb to the wall �c�, at which point
they both begin to glide slowly toward the same wall
focus. However, the lower dislocation is annihilated at
the sidewall �d�, and the remaining dislocation continues
to glide slowly into the wall focus, where it is annihi-
lated �e�. A Pan-Am pattern again forms � f�, and fi-
nally the process repeats. This is in general agreement
with flow visualizations from related room-temperature
argon-based experiments [7–9]. Case (iii) may be periodic
on a long time scale of t � 40th; the duration of the simu-
lation is inadequate to be conclusive. Case (iv) illustrates
a chaotic burst of duration t � 54th bounded by periodic
dynamics with a period of t � 17. Again the simulation
duration is inadequate to determine whether this is a tran-
sient state or whether the chaotic bursting will repeat. Case
(v) shows an initial chaotic transient that makes a transi-
tion at t � 18th to a very complicated quasiperiodic state
where the central roll pair is pinned by the dynamic mo-
tion of two opposing disclinations. The dominant mode in
the quasiperiodic state has a time scale t � 8. Case (vi)
illustrates chaotic dynamics.
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FIG. 5. The power spectrum, �P�n��, for case (ii) on a log-
linear scale to illustrate the region of exponential decay. The
slope of the dashed line is 23.8; the crossover to exponential
decay occurs at n � 1.5.
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FIG. 6. Flow visualization showing contours of the thermal
perturbation at the mid-depth, (six evenly spaced contours;
20.2 # dT # 0.2, negative values are dashed lines, and
positive values are solid lines) for case (ii). Panels (a)– (f ) are
for t � 600, 605, 630, 650, 735, 785. The dislocations glide
to the right; during the next period, the dislocations glide to
the left, as can already be discerned in (f) by the bias in the
roll compression. This left and right alternation continues for
the entire simulation.

We have also performed simulations for the G � 4.72
cylindrical domain with insulating lateral boundary con-
ditions, in addition to simulations in a G � 7.66 domain
(s � 0.69 for argon) for both conducting and insulating
lateral boundaries. Considering these additional results,
we maintain our conclusions concerning the origin of the
power law.

This work represents a joint computational and theo-
retical effort to further our quantitative understanding of
complex dynamics in spatially extended nonequlibrium
systems. An important link missing in nearly all theoreti-
154501-4
cal work to date has been a quantitative comparison with
experiment. Our results demonstrate that this quantitative
comparison with experiment is now possible. We plan to
use this approach to investigate spatiotemporal chaos in
larger aspect ratio systems.
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