225 research outputs found

    Применение метода долгосрочного прогнозирования водонефтяного фактора для определения максимально возможного расчётного объёма добычи нефти месторождения "Чёрный Дракон", Вьетнам

    Get PDF
    Objective - Although junctional adhesion molecule-A (JAM-A) has recently been implicated in leukocyte recruitment on early atherosclerotic endothelium and after reperfusion injury, its role in neointima formation after arterial injury remains to be elucidated. Methods and Results - Here we show that the genetic deletion of JAM-A in apolipoprotein E - deficient (apoE(-/-)) mice significantly reduced neointimal hyperplasia after wire injury of carotid arteries without altering medial area. This was associated with a significant decrease in neointimal macrophage content, whereas the relative content of smooth muscle cells and endothelial recovery was unaltered in JAM-A(-/-) apoE(-/-) compared with JAM-A(-/-) apoE(-/-) lesions. In carotid arteries perfused ex vivo, deficiency in JAM-A significantly impaired the recruitment of monocytes 1 week, but not 1 day, after injury. These effects were paralleled by an attenuation of monocyte arrest and transmigration on activated JAM-A(-/-) apoE(-/-) versus JAM-A(-/-) apoE(-/-) endothelial cells under flow conditions in vitro. A mechanism underlying reduced recruitment was implied by findings that the luminal expression of the arrest chemokine RANTES in injured arteries and its endothelial deposition by activated platelets in vitro were diminished by JAM-A deficiency. Conclusions - Our data provide the first evidence to our knowledge for a crucial role of JAM-A in accelerated lesion formation and monocyte infiltration in atherosclerosis-prone mice

    Structural control of the non-ionic surfactant alcohol ethoxylates (AEOs) on transport in natural soils

    Get PDF
    Surfactants, after use, enter the environment through diffuse and point sources such as irrigation with treated and non-treated waste water and urban and industrial wastewater discharges. For the group of non-ionic synthetic surfactant alcohol ethoxylates (AEOs), most of the available information is restricted to the levels and fate in aquatic systems, whereas current knowledge of their behavior in soils is very limited. Here we characterize the behavior of different homologs (C12-C18) and ethoxymers (E03, E06, and E08) of the AEOs through batch experiments and under unsaturated flow conditions during infiltration experiments. Experiments used two different agricultural soils from a region irrigated with reclaimed water (Guadalete River basin, SW Spain). In parallel, water flow and chemical transport were modelled using the HYDRUS-1D software package, calibrated using the infiltration experimental data. Estimates of water flow and reactive transport of all surfactants were in good agreement between infiltration experiments and simulations. The sorption process followed a Freundlich isotherm for most of the target compounds. A systematic comparison between sorption data obtained from batch and infiltration experiments revealed that the sorption coefficient (K-d) was generally lower in infiltration experiments, performed under environmental flow conditions, than in batch experiments in the absence of flow, whereas the exponent (beta) did not show significant differences. For the low clay and organic carbon content of the soils used, no clear dependence of K-d on them was observed. Our work thus highlights the need to use reactive transport parameterization inferred under realistic conditions to assess the risk associated with alcohol ethoxylates in subsurface environments. (C) 2020 The Authors. Published by Elsevier Ltd

    Functionally specialized junctions between endothelial cells of lymphatic vessels

    Get PDF
    Recirculation of fluid and cells through lymphatic vessels plays a key role in normal tissue homeostasis, inflammatory diseases, and cancer. Despite recent advances in understanding lymphatic function (Alitalo, K., T. Tammela, and T.V. Petrova. 2005. Nature. 438:946–953), the cellular features responsible for entry of fluid and cells into lymphatics are incompletely understood. We report the presence of novel junctions between endothelial cells of initial lymphatics at likely sites of fluid entry. Overlapping flaps at borders of oak leaf–shaped endothelial cells of initial lymphatics lacked junctions at the tip but were anchored on the sides by discontinuous button-like junctions (buttons) that differed from conventional, continuous, zipper-like junctions (zippers) in collecting lymphatics and blood vessels. However, both buttons and zippers were composed of vascular endothelial cadherin (VE-cadherin) and tight junction–associated proteins, including occludin, claudin-5, zonula occludens–1, junctional adhesion molecule–A, and endothelial cell–selective adhesion molecule. In C57BL/6 mice, VE-cadherin was required for maintenance of junctional integrity, but platelet/endothelial cell adhesion molecule–1 was not. Growing tips of lymphatic sprouts had zippers, not buttons, suggesting that buttons are specialized junctions rather than immature ones. Our findings suggest that fluid enters throughout initial lymphatics via openings between buttons, which open and close without disrupting junctional integrity, but most leukocytes enter the proximal half of initial lymphatics

    Climacteric Lowers Plasma Levels of Platelet-Derived Microparticles: A Pilot Study in Pre-versus Postmenopausal Women

    Get PDF
    Background: Climacteric increases the risk of thrombotic events by alteration of plasmatic coagulation. Up to now, less is known about changes in platelet-(PMP) and endothelial cell-derived microparticles (EMP). Methods: In this prospective study, plasma levels of microparticles (MP) were compared in 21 premenopausal and 19 postmenopausal women. Results: No altered numbers of total MP or EMP were measured within the study groups. However, the plasma values of CD61-exposing MP from platelets/megakaryocytes were higher in premenopausal women (5,364 x 10(6)/l, range 4,384-17,167) as compared to postmenopausal women (3,808 x 10(6)/l, range 2,009-8,850; p = 0.020). This differentiation was also significant for the subgroup of premenopausal women without hormonal contraceptives (5,364 x 10(6)/l, range 4,223-15,916; p = 0.047; n = 15). Furthermore, in premenopausal women, higher plasma levels of PMP exposing CD62P were also present as compared to postmenopausal women (288 x 10(6)/l, range 139-462, vs. 121 x 10(6)/l, range 74-284; p = 0.024). This difference was also true for CD63+ PMP levels (281 x 10(6)/l, range 182-551, vs. 137 x 10(6)/l, range 64-432; p = 0.015). Conclusion: Climacteric lowers the level of PMP but has no impact on the number of EMP in women. These data suggest that PMP and EMP do not play a significant role in enhancing the risk of thrombotic events in healthy, postmenopausal women. Copyright (C) 2012 S. Karger AG, Base

    Abrogation of Junctional Adhesion Molecule-A Expression Induces Cell Apoptosis and Reduces Breast Cancer Progression

    Get PDF
    Intercellular junctions promote homotypic cell to cell adhesion and transfer intracellular signals which control cell growth and apoptosis. Junctional adhesion molecule-A (JAM-A) is a transmembrane immunoglobulin located at tight junctions of normal epithelial cells of mammary ducts and glands. In the present paper we show that JAM-A acts as a survival factor for mammary carcinoma cells. JAM-A null mice expressing Polyoma Middle T under MMTV promoter develop significantly smaller mammary tumors than JAM-A positive mice. Angiogenesis and inflammatory or immune infiltrate were not statistically modified in absence of JAM-A but tumor cell apoptosis was significantly increased. Tumor cells isolated from JAM-A null mice or 4T1 cells incubated with JAM-A blocking antibodies showed reduced growth and increased apoptosis which paralleled altered junctional architecture and adhesive function. In a breast cancer clinical data set, tissue microarray data show that JAM-A expression correlates with poor prognosis. Gene expression analysis of mouse tumor samples showed a correlation between genes enriched in human G3 tumors and genes over expressed in JAM-A +/+ mammary tumors. Conversely, genes enriched in G1 human tumors correlate with genes overexpressed in JAM-A−/− tumors. We conclude that down regulation of JAM-A reduces tumor aggressive behavior by increasing cell susceptibility to apoptosis. JAM-A may be considered a negative prognostic factor and a potential therapeutic target

    Wnt/β-catenin signaling controls development of the blood–brain barrier

    Get PDF
    The blood–brain barrier (BBB) is confined to the endothelium of brain capillaries and is indispensable for fluid homeostasis and neuronal function. In this study, we show that endothelial Wnt/β-catenin (β-cat) signaling regulates induction and maintenance of BBB characteristics during embryonic and postnatal development. Endothelial specific stabilization of β-cat in vivo enhances barrier maturation, whereas inactivation of β-cat causes significant down-regulation of claudin3 (Cldn3), up-regulation of plamalemma vesicle-associated protein, and BBB breakdown. Stabilization of β-cat in primary brain endothelial cells (ECs) in vitro by N-terminal truncation or Wnt3a treatment increases Cldn3 expression, BBB-type tight junction formation, and a BBB characteristic gene signature. Loss of β-cat or inhibition of its signaling abrogates this effect. Furthermore, stabilization of β-cat also increased Cldn3 and barrier properties in nonbrain-derived ECs. These findings may open new therapeutic avenues to modulate endothelial barrier function and to limit the devastating effects of BBB breakdown

    Vitronectin Increases Vascular Permeability by Promoting VE-Cadherin Internalization at Cell Junctions

    Get PDF
    Cross-talk between integrins and cadherins regulates cell function. We tested the hypothesis that vitronectin (VN), a multi-functional adhesion molecule present in the extracellular matrix and plasma, regulates vascular permeability via effects on VE-cadherin, a critical regulator of endothelial cell (EC) adhesion.Addition of multimeric VN (mult VN) significantly increased VE-cadherin internalization in human umbilical vein EC (HUVEC) monolayers. This effect was blocked by the anti-α(V)β(3) antibody, pharmacological inhibition and knockdown of Src kinase. In contrast to mult VN, monomeric VN did not trigger VE-cadherin internalization. In a modified Miles assay, VN deficiency impaired vascular endothelial growth factor-induced permeability. Furthermore, ischemia-induced enhancement of vascular permeability, expressed as the ratio of FITC-dextran leakage from the circulation into the ischemic and non-ischemic hindlimb muscle, was significantly greater in the WT mice than in the Vn(-/-) mice. Similarly, ischemia-mediated macrophage infiltration was significantly reduced in the Vn(-/-) mice vs. the WT controls. We evaluated changes in the multimerization of VN in ischemic tissue in a mouse hindlimb ischemia model. VN plays a previously unrecognized role in regulating endothelial permeability via conformational- and integrin-dependent effects on VE-cadherin trafficking.These results have important implications for the regulation of endothelial function and angiogenesis by VN under normal and pathological conditions

    Endothelial Wnt/β-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression

    Get PDF
    Endothelial Wnt/β-catenin signaling is necessary for angiogenesis of the central nervous system and blood–brain barrier (BBB) differentiation, but its relevance for glioma vascularization is unknown. In this study, we show that doxycycline-dependent Wnt1 expression in subcutaneous and intracranial mouse glioma models induced endothelial Wnt/β-catenin signaling and led to diminished tumor growth, reduced vascular density, and normalized vessels with increased mural cell attachment. These findings were corroborated in GL261 glioma cells intracranially transplanted in mice expressing dominant-active β-catenin specifically in the endothelium. Enforced endothelial β-catenin signaling restored BBB characteristics, whereas inhibition by Dkk1 (Dickkopf-1) had opposing effects. By overactivating the Wnt pathway, we induced the Wnt/β-catenin–Dll4/Notch signaling cascade in tumor endothelia, blocking an angiogenic and favoring a quiescent vascular phenotype, indicated by induction of stalk cell genes. We show that β-catenin transcriptional activity directly regulated endothelial expression of platelet-derived growth factor B (PDGF-B), leading to mural cell recruitment thereby contributing to vascular quiescence and barrier function. We propose that reinforced Wnt/β-catenin signaling leads to inhibition of angiogenesis with normalized and less permeable vessels, which might prove to be a valuable therapeutic target for antiangiogenic and edema glioma therapy

    KLF4 is a key determinant in the development and progression of cerebral cavernous malformations

    Get PDF
    Cerebral cavernous malformations (CCMs) are vascular malformations located within the central nervous system often resulting in cerebral hemorrhage. Pharmacological treatment is needed, since current therapy is limited to neurosurgery. Familial CCM is caused by loss-of-function mutations in any of Ccm1, Ccm2, and Ccm3 genes. CCM cavernomas are lined by endothelial cells (ECs) undergoing endothelial-to-mesenchymal transition (EndMT). This switch in phenotype is due to the activation of the transforming growth factor beta/bone morphogenetic protein (TGF\u3b2/BMP) signaling. However, the mechanism linking Ccm gene inactivation and TGF\u3b2/BMP-dependent EndMT remains undefined. Here, we report that Ccm1 ablation leads to the activation of a MEKK3-MEK5-ERK5-MEF2 signaling axis that induces a strong increase in Kruppel-like factor 4 (KLF4) in ECs in\ua0vivo. KLF4 transcriptional activity is responsible for the EndMT occurring in CCM1-null ECs. KLF4 promotes TGF\u3b2/BMP signaling through the production of BMP6. Importantly, in endothelial-specific Ccm1 and Klf4 double knockout mice, we observe a strong reduction in the development of CCM and mouse mortality. Our data unveil KLF4 as a therapeutic target for CCM
    corecore