103 research outputs found

    Phase retrieval by coherent modulation imaging

    Get PDF
    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single-diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit wave. This coherent modulation imaging method removes inherent ambiguities of coherent diffraction imaging and uses a reliable, rapidly converging iterative algorithm involving three planes. It works for extended samples, does not require tight support for convergence and relaxes dynamic range requirements on the detector. Coherent modulation imaging provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free-electron lasers

    A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    Get PDF
    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials

    High sensitivity X-ray phase contrast imaging by laboratory grating-based interferometry at high Talbot order geometry

    Get PDF
    X-ray phase contrast imaging is a powerful analysis technique for materials science and biomedicine. Here, we report on laboratory grating-based X-ray interferometry employing a microfocus X-ray source and a high Talbot order (35th) asymmetric geometry to achieve high angular sensitivity and high spatial resolution X-ray phase contrast imaging in a compact system (total length <1 m). The detection of very small refractive angles (∼50 nrad) at an interferometer design energy of 19 keV was enabled by combining small period X-ray gratings (1.0, 1.5 and 3.0 µm) and a single-photon counting X-ray detector (75 µm pixel size). The performance of the X-ray interferometer was fully characterized in terms of angular sensitivity and spatial resolution. Finally, the potential of laboratory X-ray phase contrast for biomedical imaging is demonstrated by obtaining high resolution X-ray phase tomographies of a mouse embryo embedded in solid paraffin and a formalin-fixed full-thickness sample of human left ventricle in water with a spatial resolution of 21.5 µm

    Highly strained, radially π-conjugated porphyrinylene nanohoops

    Get PDF
    Small π-conjugated nanohoops are difficult to prepare, but offer an excellent platform for studying the interplay between strain and optoelectronic properties, and, increasingly, these shape-persistent macrocycles find uses in host-guest chemistry and self-assembly. We report the synthesis of a new family of radially π-conjugated porphyrinylene/phenylene nanohoops. The strain energy in the smallest nanohoop [2]CPT is approximately 54 kcal mol⁻¹, which results in a narrowed HOMO-LUMO gap and a red shift in the visible part of the absorption spectrum. Because of its high degree of preorganization and a diameter of ca. 13 Å, [2]CPT was found to accommodate C₆₀ with a binding affinity exceeding 10⁸ M⁻¹ despite the fullerene not fully entering the cavity of the host (X-ray crystallography). Moreover, the ?-extended nanohoops [2]CPTN, [3]CPTN, and [3]CPTA (N for 1,4-naphthyl; A for 9,10-anthracenyl) have been prepared using the same strategy, and [2]CPTN has been shown to bind C₇₀ 5 times more strongly than [2]CPT. Our failed synthesis of [2]CPTA highlights a limitation of the experimental approach most commonly used to prepare strained nanohoops, because in this particular case the sum of aromatization energies no longer outweighs the buildup of ring strain in the final reaction step (DFT calculations). These results indicate that forcing ring strain onto organic semiconductors is a viable strategy to fundamentally influence both optoelectronic and supramolecular properties

    Beam-induced damage on diffractive hard X-ray optics

    Get PDF
    Beam-induced damage on diffractive hard X-ray optics is studied by means of X-ray diffraction and scanning electron microscopy

    Towards virtual histology with X-ray grating interferometry

    Full text link
    Breast cancer is the most common type of cancer worldwide. Diagnosing breast cancer relies on clinical examination, imaging and biopsy. A core-needle biopsy enables a morphological and biochemical characterization of the cancer and is considered the gold standard for breast cancer diagnosis. A histopathological examination uses high-resolution microscopes with outstanding contrast in the 2D plane, but the spatial resolution in the third, Z-direction, is reduced. In the present paper, we propose two high-resolution table-top systems for phase-contrast X-ray tomography of soft-tissue samples. The first system implements a classical Talbot-Lau interferometer and allows to perform ex-vivo imaging of human breast samples with a voxel size of 5.57 μm. The second system with a comparable voxel size relies on a Sigray MAAST X-ray source with structured anode. For the first time, we demonstrate the applicability of the latter to perform X-ray imaging of human breast specimens with ductal carcinoma in-situ. We assessed image quality of both setups and compared it to histology. We showed that both setups made it possible to target internal features of breast specimens with better resolution and contrast than previously achieved, demonstrating that grating-based phase-contrast X-ray CT could be a complementary tool for clinical histopathology

    Antibacterial films based on MOF composites that release iodine passively or upon triggering by near-infrared light

    Get PDF
    This work was supported by the CERCA Program/Generalitat de Catalunya.Multidrug-resistant bacteria have become a global health problem for which new prophylactic strategies are now needed, including surface-coatings for hospital spaces and medical equipment. This work reports the preparation and functional validation of a metal-organic framework (MOF) based composite for the triggered controlled release of iodine, an antimicrobial element that does not generate resistance. It comprises beads of the iodophilic MOF UiO-66 containing encapsulated gold nanorods (AuNRs) coated with a silica shell. Irradiation of the AuNRs with near-infrared light (NIR) provokes a photothermal effect and the resultant heat actively liberates the iodine. After validating the performance of this composite, it is integrated into a polymer for the development of antibacterial films. This work assesses the adsorption of iodine into these composite films, as well as its passive long-term release and active light-triggered. Finally, this work validates the antibacterial activity of the composite films in vitro against gram-positive and gram-negative bacteria. The findings will surely inform the development of new prophylactic treatments

    Enhanced Spin Tunneling in a Molecular Magnet Mixed with a Superconductor

    Get PDF
    We report characterization and magnetic studies of mixtures of micrometer-size ribbons of Mn acetate and micrometer-size particles of YBaCuO superconductor. Extremely narrow zero-field spin-tunneling resonance has been observed in the mixtures, pointing to the absence of the inhomogeneous dipolar broadening. It is attributed to the screening of the internal magnetic fields in the magnetic particles by Meissner currents flowing between superconducting grains surrounding the particles
    corecore