8 research outputs found

    New factors for protein transport identified by a genome-wide CRISPRi screen in mammalian cells

    Get PDF
    Protein and membrane trafficking pathways are critical for cell and tissue homeostasis. Traditional genetic and biochemical approaches have shed light on basic principles underlying these processes. However, the list of factors required for secretory pathway function remains incomplete, and mechanisms involved in their adaptation poorly understood. Here, we present a powerful strategy based on a pooled genome-wide CRISPRi screen that allowed the identification of new factors involved in protein transport. Two newly identified factors, TTC17 and CCDC157, localized along the secretory pathway and were found to interact with resident proteins of ER-Golgi membranes. In addition, we uncovered that upon TTC17 knockdown, the polarized organization of Golgi cisternae was altered, creating glycosylation defects, and that CCDC157 is an important factor for the fusion of transport carriers to Golgi membranes. In conclusion, our work identified and characterized new actors in the mechanisms of protein transport and secretion, and opens stimulating perspectives for the use of our platform in physiological and pathological contexts.Includes Wellcome Trust, MRC and H202

    EDEM3 Domains Cooperate to Perform Its Overall Cell Functioning

    No full text
    EDEM3 recognizes and directs misfolded proteins to the ER-associated protein degradation (ERAD) process. EDEM3 was predicted to act as lectin or as a mannosidase because of its homology with the GH47 catalytic domain of the Man1B1, but the contribution of the other regions remained unresolved. Here, we dissect the molecular determinants governing EDEM3 function and its cellular interactions. LC/MS analysis indicates very few stable ER interactors, suggesting EDEM3 availability for transient substrate interactions. Sequence analysis reveals that EDEM3 consists of four consecutive modules defined as GH47, intermediate (IMD), protease-associated (PA), and intrinsically disordered (IDD) domain. Using an EDEM3 knock-out cell line, we expressed EDEM3 and domain deletion mutants to address EDEM3 function. We find that the mannosidase domain provides substrate binding even in the absence of mannose trimming and requires the IMD domain for folding. The PA and IDD domains deletions do not impair the trimming, but specifically modulate the turnover of two misfolded proteins, NHK and the soluble tyrosinase mutant. Hence, we demonstrate that EDEM3 provides a unique ERAD timing to misfolded glycoproteins, not only by its mannose trimming activity, but also by the positive and negative feedback modulated by the protease-associated and intrinsically disordered domain, respectively
    corecore