384 research outputs found

    Clay/Conductive Polymer Nanocomposites

    Get PDF
    This chapter describes the main strategies for designing clay nanocomposites of the most investigated inherently conductive polymers, namely, polypyrrole, polyaniline, and polythiophenes including poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. It is shown that premodification of clays is an essential step to successful intercalation or exfoliation by conductive polymers. Toward this end, surfactants, reactive diazonium, and silanes permit the preparation of adhesive clay sheets for the conductive polymers once polymerization is triggered. Exfoliated nanocomposites usually exhibit superior properties compared to intercalated ones. Through selected applications (e.g., conductive fillers, catalysts, sensors, ultracapacitors), it is clear that research on clay–conductive polymer nanocomposites will continue to grow because these materials combine the best of two worlds: low-cost abundant minerals with remarkable nanostructural properties and nanostructuring abilities on the one hand and ease of synthesis, reactivity, and electrical conductivity of conjugated polymers on the other hand.Scopu

    Synthesis and structural characterization of a new macrocyclic polysiloxane-immobilized ligand system

    Get PDF
    A new porous solid macrocyclic 1,4,7,11,14-pentaazapentadecane-3,15-dione polysiloxane ligand system of the general formula P–(CH2)3–C11H22O2N5 (where P represents [Si–O] n siloxane network) has been prepared by the reaction of polysiloxane-immobilized iminobis(N-(2-aminoethyl)acetamide) with 1,3-dibromopropane. The FTIR and XPS results confirm the introduction of the macrocyclic functional ligand group into the polysiloxane network. The new macrocyclic polysiloxane ligand system exhibits high potential for the uptake of metal ions (Fe3+, Co2+, Ni2+, Cu2+ and Zn2+)

    A hybrid quantum-classical fusion neural network to improve protein-ligand binding affinity predictions for drug discovery

    Full text link
    The field of drug discovery hinges on the accurate prediction of binding affinity between prospective drug molecules and target proteins, especially when such proteins directly influence disease progression. However, estimating binding affinity demands significant financial and computational resources. While state-of-the-art methodologies employ classical machine learning (ML) techniques, emerging hybrid quantum machine learning (QML) models have shown promise for enhanced performance, owing to their inherent parallelism and capacity to manage exponential increases in data dimensionality. Despite these advances, existing models encounter issues related to convergence stability and prediction accuracy. This paper introduces a novel hybrid quantum-classical deep learning model tailored for binding affinity prediction in drug discovery. Specifically, the proposed model synergistically integrates 3D and spatial graph convolutional neural networks within an optimized quantum architecture. Simulation results demonstrate a 6% improvement in prediction accuracy relative to existing classical models, as well as a significantly more stable convergence performance compared to previous classical approaches.Comment: 5 pages, 3 figure

    Data on the fabrication of hybrid calix [4]arene-modified natural bentonite clay for efficient selective removal of toxic metals from wastewater at room temperature

    Get PDF
    Fresh water resources on the earth are less than 0.2%; meanwhile, around 80% of the freshwater is consumed daily in agriculture, industries, and household activities [1–2]. There is an essential need to develop efficient adsorbents for wastewater treatment [1–6], in this regards, hereafter we present the rationale synthesis and characterization of hybrid natural bentonite clay modified with Calix [4] arene (denoted as B-S-Calix) as efficient adsorbents for toxic metals from wastewater. This is driven by the facile photo-radical thiol-yne addition among the thiolated clay and an alkynylated calix[4]arene. The morphology, surface modifications, and Thermal degradation of B, B-S, and B-S-Calix were investigated using TEM, FTIR, and TGA techniques. The adsorption performance of B, BS and B-S-Calix towards toxic metals including cadmium (II) ion [Cd (II)], zinc (II) ion [Zn(II)], lead(II) ion [Pb(II)], strontium(II) ion [Sr (II)], cobalt(II) ion [Co (II)], copper(II) ion [Cu(II)], and mercury (II) ion [Hg(II)] from wastewater were benchmarked 25 °C. These data are related to the article entitled “hybrid Clay/Calix[4]arene Calix[4]arene-clicked clay through thiol-yne addition for the molecular recognition and removal of Cd(II) from wastewater’’ [7]

    Rational synthesis, characterization, and application of environmentally friendly (polymer–carbon dot) hybrid composite film for fast and efficient UV-assisted Cd<sup>2+</sup> removal from water

    Get PDF
    Background: Carbon dots (CDs) are of particular interest in numerous applications. However, their efficiency for heavy metal removal from wastewater was not yet reported. Herein, we rationally synthesized CDs from petroleum coke waste via hydrothermal treatment in the presence of ammonia. Results: This drove the formation of outstanding photoluminescent, water-soluble, biocompatible, and high yield of monodispersed sub-5 nm CDs. The CDs are co-doped with high 10% of N and 0.2% of S. The as-prepared CDs possess unprecedented photoluminescent properties over broad pH range making these dots unique efficient pH sensor. Conclusions: Chitosan (CH)–CDs hybrid hydrogel nanocomposite film was further prepared as a platform membrane for the removal Cd2+ metal from wastewater. The as-prepared CH–CDs membranes show relatively good mechanical properties, based on stress resistance and flexibility to facilitate handling. The equilibrium state was reached within 5 min. Intriguingly, the UV-light illuminations enhanced the Cd2+ removal efficiency of the photoluminescent CDs substantially by four times faster under. It was found that adsorption followed pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption capacity at 25 °C was found to be 112.4 mg g−1 at pH 8. This work paves the way to new applications of CDs in water treatment.[Figure not available: see fulltext.]

    Can Plasmon Change Reaction Path? : Decomposition of Unsymmetrical Iodonium Salts as an Organic Probe

    Get PDF
    Plasmon-assisted transformations of organic compounds represent a novel opportunity for conversion of light to chemical energy at room temperature. However, the mechanistic insights of interaction between plasmon energy and organic molecules is still under debate. Herein, we proposed a comprehensive study of the plasmon-assisted reaction mechanism using unsymmetric iodonium salts (ISs) as an organic probe. The experimental and theoretical analysis allow us to exclude the possible thermal effect or hot electron transfer. We found that plasmon interaction with unsymmetrical ISs led to the intramolecular excitation of electron followed by the regioselective cleavage of C–I bond with the formation of electron-rich radical species, which cannot be explained by the hot electron excitation or thermal effects. The high regioselectivity is explained by the direct excitation of electron to LUMO with the formation of a dissociative excited state according to quantum-chemical modeling, which provides novel opportunities for the fine control of reactivity using plasmon energy.Peer reviewe

    Anti-corrosive and oil sensitive coatings based on epoxy/polyaniline/magnetite-clay composites through diazonium interfacial chemistry

    Get PDF
    Epoxy polymer nanocomposites filled with magnetite (Fe3O4) clay (B), named (B-DPA-PANI@Fe3O4) have been prepared at different filler loading (0.1, 0.5, 1, 3, 5 wt. %). The surface modification of clay by polyaniline (PANI) is achieved in the presence of 4-diphenylamine diazonium salt (DPA). The effects of the nanofiller loading on Tensile, mechanical and dielectric properties were systematically studied. Improved properties was highlighted for all reinforced samples. The addition of only 3 wt. % of the filler enhanced the tensile strength of the composites by 256%, and the glass transition temperature Tg by 37%. The dielectric spectra over a broad frequency showed a robust interface between the hybrid (B-DPA-PANI@Fe3O4) fillers and epoxy matrix. The results showed most significant improvement in corrosion inhibition using electrochemical impedance spectroscopy (EIS) in 3.5 wt % NaCl, as well as a significant response in oil sensing test. High charge transfer resistance of 110 × 106 Ω.cm2 using 3-wt % of filler was noted compared to 0.35 × 106 Ω.cm2 for the pure epoxy. The results obtained herein will open new routes for the preparation of efficient anticorrosion sensor coatings. © 2018, The Author(s).NPRP Award from the Qatar National Research Fund (a member of Qatar Foundation) [8-878-1-172

    Mapping the beach beneath the street:digital cartography for the playable city

    Get PDF
    Maps are an important component within many of the playful and gameful experiences designed to turn cities into a playable infrastructures. They take advantage of the fact that the technology used for obtaining accurate spatial information, such as GPS receivers and magnetometers (digital compasses), are now so wide-spread that they are considered as ‘standard’ sensors on mobile phones, which are themselves ubiquitous. Interactive digital maps, therefore, are are widely used by the general public for a variety of purposes. However, despite the rich design history of cartography digital maps typically exhibit a dominant aesthetic that has been de-signed to serve the usability and utility requirements of turn-by-turn urban navigation, which is itself driven by the proliferation of in-car and personal navigation services. The navigation aesthetic is now widespread across almost all spatial applications, even where a be-spoke cartographic product would be better suited. In this chapter we seek to challenge this by exploring novel neo-cartographic ap-proaches to making maps for use within playful and gameful experi-ences designed for the cities. We will examine the potential of de-sign approaches that can producte not only more aesthetically pleasing maps, but also offer the potential for influencing user be-haviour, which can be used to promote emotional engagement and exploration in playable city experiences

    Immune reconstitution disease associated with parasitic infections following antiretroviral treatment

    Get PDF
    HIV-associated immune reconstitution disease (IRD) is the clinical presentation or deterioration of opportunistic infections that results from enhancement of pathogen-specific immune responses among patients responding to antiretroviral treatment (ART). The vast majority of reported cases of IRD have been associated with mycobacterial, chronic viral and invasive fungal infections; such cases result from dysregulated augmentation of cell-mediated type 1 cytokine-secreting host immune responses. However, the spectrum of infections now recognized as associated with IRD is expanding and includes a number of parasitic infections, which may be mediated by different immunopathological mechanisms. These include leishmaniasis (visceral, cutaneous, mucosal and post kala azar dermal leishmaniasis), schistosomiasis and strongyloidiasis. Since the major burden of HIV lies in resource-limited countries where access to ART is now rapidly expanding, increased awareness and knowledge of these phenomena is important. Here we review the clinical spectrum and pathogenesis of IRD associated with parasitic infections
    corecore