21 research outputs found
Therapeutic targeting of CK2 in acute and chronic leukemias
Phosphorylation can regulate almost every property of a protein and is involved in all fundamental cellular processes. Thus, proper regulation of phosphorylation events is critical to the homeostatic functions of cell signaling. Indeed, deregulation of signaling pathways underlies many human diseases, including cancer.[1] The importance of phosphorylation makes protein kinases and phosphatases promising therapeutic targets for a wide variety of disorders.[2] CK2, formerly known as casein kinase II, was discovered in 1954, [3] although only recently, and especially over the last two decades, it has become one of the most studied protein kinases, due to its ubiquity, pleiotropy and constitutive activity. In particular, appreciation of its pleiotropy has completely changed our vision of CK2 biology, from an ordinary cell homeostasis-maintaining enzyme to a master kinase potentially implicated in many human physiological and pathological events. CK2 is responsible for about 25% of the phosphoproteome,[4] as it catalyzes the phosphorylation of >300 substrates.[5] This partly explains the CK2 interconnected roles that underlie its involvement in many signaling pathways. However, CK2 prevalent roles are promotion of cell growth and suppression of apoptosis. Accordingly, several lines of evidence support the notion that CK2 is a key player in the pathogenesis of cancer. High levels of CK2 transcript and protein expression, as well as increased kinase activity are associated with the pathological functions of CK2 in a number of neoplasias.[6] It was only over the last decade, after extensive analyses in solid tumors, that basic and translational studies have provided evidence for a pivotal role of CK2 in driving the growth of different blood cancers as well, although the first report demonstrating increased CK2 expression in acute myelogenous leukemia (AML) dates back to 1985.[7] Since then, CK2 overexpression/activity has been demonstrated in other hematological malignancies, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL) and chronic myelogenous leukemia (CML). [8] With the notable exceptions of CML and pediatric ALL, many patients with leukemias still have a poor outcome, despite the development of protocols with optimized chemotherapy combinations. Insufficient response to first-line therapy and unsalvageable relapses present major therapeutic challenges. Moreover, chemotherapy, even if successful, could have deleterious long-term biological and psychological effects, especially in children.[9] Furthermore, CML patients can develop resistance to tyrosine kinase inhibitors (TKIs), while both primary chemoresistant and relapsed pediatric ALL cases still remain an unresolved issue.[9
Singular Interaction between an Antimetastatic Agent and the Lipid Bilayer: The Ohmline Case
SK3 channels are abnormaly expressed in metastatic cells, and Ohmline (OHM), an ether lipid, has been shown to reduce the activity of SK3 channels and the migration capacity of cancer cells. OHM incorporation into the plasma membrane is proposed to dissociate the protein complex formed between SK3 and Orai1, a potassium and a calcium channel, respectively, and would lead to a modification in the lipid environment of both the proteins. Here, we report the synthesis of deuterated OHM that affords the determination, through solid-state NMR, of its entire partitioning into membranes mimicking the SK3 environment. Use of deuterated lipids affords the demonstration of an OHM-induced membrane disordering, which is dose-dependent and increases with increasing amounts of cholesterol (CHOL). Molecular dynamics simulations comfort the disordering action and show that OHM interacts with the carbonyl and phosphate groups of stearoylphosphatidylcholine and sphingomyelin and to a minor extent with CHOL. OHM is thus proposed to remove the CHOL OH moieties away from their main binding sites, forcing a new rearrangement with other lipid groups. Such an interaction takes its origin at the lipid-water interface, but it propagates toward the entire lipid molecules and leads to a cooperative destabilization of the lipid acyl chains, that is, membrane disordering. The consequences of this reorganization of the lipid phases are discussed in the context of the OHM-induced inhibition of SK3 channels
Extracellular signal-regulated kinase is essential for interleukin-1-induced and nuclear factor kappaB-mediated gene expression in insulin-producing INS-1E cells.
AIMS/HYPOTHESIS: The beta cell destruction and insulin deficiency that characterises type 1 diabetes mellitus is partially mediated by cytokines, such as IL-1beta, and by nitric oxide (NO)-dependent and -independent effector mechanisms. IL-1beta activates mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK), and the nuclear factor kappa B (NFkappaB) pathway. Both pathways are required for expression of the gene encoding inducible nitric oxide synthase (iNOS) and for IL-1beta-mediated beta cell death. The molecular mechanisms by which these two pathways regulate beta cell Nos2 expression are currently unknown. Therefore, the aim of this study was to clarify the putative crosstalk between MAPK and NFkappaB activation in beta cells. MATERIALS AND METHODS: The MAPKs ERK, p38 and JNK were inhibited by SB203580, PD98059 or Tat-JNK binding domain or by cells overexpressing the JNK binding domain. The effects of MAPK inhibition on IL-1beta-induced iNOS production and kappa B inhibitor protein (IkappaB) degradation were examined by western blotting. NFkappaB DNA binding was investigated by electrophoretic mobility shift assay, while NFkappaB-induced gene transcription was evaluated by gene reporter assays. RESULTS: Inhibition of the MAPKs did not affect IkappaB degradation or NFkappaB DNA binding. However, inhibition of ERK reduced NFkappaB-mediated Nos2 expression; serine 276 phosphorylation of the p65 unit of the NFkappaB complex seemed critical, as evaluated by amino acid mutation analysis. CONCLUSIONS/INTERPRETATION: ERK activity is required for NFkappaB-mediated transcription of Nos2 in insulin-producing INS-1E cells, indicating that ERK regulates Nos2 expression by increasing the transactivating capacity of NFkappaB. This may involve phosphorylation of Ser276 on p65 by an as yet unidentified kinase.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
Potassium and Calcium Channel Complexes as Novel Targets for Cancer Research
International audienceThe intracellular Ca2+ concentration is mainly controlled by Ca2+ channels. These channels form complexes with K+ channels, which function to amplify Ca2+ flux. In cancer cells, voltage-gated/voltage-dependent Ca2+ channels and non-voltage-gated/voltage-independent Ca2+ channels have been reported to interact with K+ channels such as Ca2+-activated K+ channels and voltage-gated K+ channels. These channels are activated by an increase in cytosolic Ca2+ concentration or by membrane depolarization, which induces membrane hyperpolarization, increasing the driving force for Ca2+ flux. These complexes, composed of K+ and Ca2+ channels, are regulated by several molecules including lipids (ether lipids and cholesterol), proteins (e.g. STIM), receptors (e.g. S1R/SIGMAR1), and peptides (e.g. LL-37) and can be targeted by monoclonal antibodies, making them novel targets for cancer research