553 research outputs found

    Bilateral redundancy gain and callosal integrity in a man with callosal lipoma: a diffusion-tensor imaging study

    Get PDF
    We investigated whether abnormalities in the structural organisation of the corpus callosum in the presence of curvilinear lipoma are associated with increased facilitation of response time to bilateral stimuli, an effect known as the redundancy gain. A patient (A.J.) with a curvilinear lipoma of the corpus callosum, his genetically-identical twin, and age-matched control participants made speeded responses to luminant stimuli. Structural organisation of callosal regions was assessed with diffusion-tensor imaging. A.J. was found to have reduced structural integrity in the splenium of the corpus callosum and produced a large redundancy gain suggestive of neural summation

    Bilateral redundancy gain and callosal integrity in a man with callosal lipoma: a diffusion-tensor imaging study

    Get PDF
    We investigated whether abnormalities in the structural organisation of the corpus callosum in the presence of curvilinear lipoma are associated with increased facilitation of response time to bilateral stimuli, an effect known as the redundancy gain. A patient (A.J.) with a curvilinear lipoma of the corpus callosum, his genetically-identical twin, and age-matched control participants made speeded responses to luminant stimuli. Structural organisation of callosal regions was assessed with diffusion-tensor imaging. A.J. was found to have reduced structural integrity in the splenium of the corpus callosum and produced a large redundancy gain suggestive of neural summation

    Fast Visuomotor Processing of Redundant Targets: The Role of the Right Temporo-Parietal Junction

    Get PDF
    Parallel processing of multiple sensory stimuli is critical for efficient, successful interaction with the environment. An experimental approach to studying parallel processing in sensorimotor integration is to examine reaction times to multiple copies of the same stimulus. Reaction times to bilateral copies of light flashes are faster than to single, unilateral light flashes. These faster responses may be due to ‘statistical facilitation’ between independent processing streams engaged by the two copies of the light flash. On some trials, however, reaction times are faster than predicted by statistical facilitation. This indicates that a neural ‘coactivation’ of the two processing streams must have occurred. Here we use fMRI to investigate the neural locus of this coactivation. Subjects responded manually to the detection of unilateral light flashes presented to the left or right visual hemifield, and to the detection of bilateral light flashes. We compared the bilateral trials where subjects' reaction times exceeded the limit predicted by statistical facilitation to bilateral trials that did not exceed the limit. Activity in the right temporo-parietal junction was higher in those bilateral trials that showed coactivation than in those that did not. These results suggest the neural coactivation observed in visuomotor integration occurs at a cognitive rather than sensory or motor stage of processing

    Kissing right? On the consistency of the head-turning bias in kissing

    Get PDF
    The present study investigated the consistency of the head-turning bias in kissing. In particular we addressed what happens if a person who prefers to kiss with the head turned to the right kisses a person who prefers to kiss with the head turned to the left. To this end, participants (N=57) were required to kiss a life-sized doll's head rotated in different orientations that were either compatible or incompatible with the participants' head-turning preference. Additionally, participants handedness, footedness, and eye preference was assessed. Results showed that a higher percentage of participants preferred to kiss with their head turned to the right than to the left. In addition, the right-turners were more consistent in their kissing behaviour than left-turners. That is, with the doll's head rotated in an incompatible direction, right-turners were less likely to switch their head to their non-preferred side. Since no clear relationships between head-turning bias and the other lateral preferences (i.e., handedness, footedness, and eye preference) were discerned, the more consistent head-turning bias among right-turners could not be explained as deriving from a joint pattern of lateral preferences that is stronger among individuals with rightward as compared to individuals with leftward lateral preferences. © 2010 Psychology Press

    Mirror-image relations in category learning

    Get PDF
    The discrimination of patterns that are mirror-symmetric counterparts of each other is difficult and requires substantial training. We explored whether mirror-image discrimination during expertise acquisition is based on associative learning strategies or involves a representational shift towards configural pattern descriptions that permit resolution of symmetry relations. Subjects were trained to discriminate between sets of unfamiliar grey-level patterns in two conditions, which either required the separation of mirror images or not. Both groups were subsequently tested in a 4-class category-learning task employing the same set of stimuli. The results show that subjects who had successfully learned to discriminate between mirror-symmetric counterparts were distinctly faster in the categorization task, indicating a transfer of conceptual knowledge between the two tasks. Additional computer simulations suggest that the development of such symmetry concepts involves the construction of configural, protoholistic descriptions, in which positions of pattern parts are encoded relative to a spatial frame of reference

    Auditory laterality in a nocturnal, fossorial marsupial (Lasiorhinus latifrons) in response to bilateral stimuli

    Get PDF
    Behavioural lateralisation is evident across most animal taxa, although few marsupial and no fossorial species have been studied. Twelve wombats (Lasiorhinus latifrons) were bilaterally presented with eight sounds from different contexts (threat, neutral, food) to test for auditory laterality. Head turns were recorded prior to and immediately following sound presentation. Behaviour was recorded for 150 seconds after presentation. Although sound differentiation was evident by the amount of exploration, vigilance and grooming performed after different sound types, this did not result in different patterns of head turn direction. Similarly, left-right proportions of head turns, walking events and food approaches in the post-sound period were comparable across sound types. A comparison of head turns performed before and after sound showed a significant change in turn direction (χ2 1 = 10.65, P = 0.001) from a left preference during the pre-sound period (mean 58% left head turns, CI 49-66%) to a right preference in the post-sound (mean 43% left head turns, CI 40-45%). This provides evidence of a right auditory bias in response to the presentation of the sound. This study therefore demonstrates that laterality is evident in southern hairy-nosed wombats in response to a sound stimulus, although side biases were not altered by sounds of varying context

    Cross-modal visuo-haptic mental rotation: comparing objects between senses

    Get PDF
    The simple experience of a coherent percept while looking and touching an object conceals an intriguing issue: different senses encode and compare information in different modality-specific reference frames. We addressed this problem in a cross-modal visuo-haptic mental rotation task. Two objects in various orientations were presented at the same spatial location, one visually and one haptically. Participants had to identify the objects as same or different. The relative angle between viewing direction and hand orientation was manipulated (Aligned versus Orthogonal). In an additional condition (Delay), a temporal delay was introduced between haptic and visual explorations while the viewing direction and the hand orientation were orthogonal to each other. Whereas the phase shift of the response time function was close to 0° in the Aligned condition, we observed a consistent phase shift in the hand’s direction in the Orthogonal condition. A phase shift, although reduced, was also found in the Delay condition. Counterintuitively, these results mean that seen and touched objects do not need to be physically aligned for optimal performance to occur. The present results suggest that the information about an object is acquired in separate visual and hand-centered reference frames, which directly influence each other and which combine in a time-dependent manner

    Perception of Symmetries in Drawings of Graphs

    Full text link
    Symmetry is an important factor in human perception in general, as well as in the visualization of graphs in particular. There are three main types of symmetry: reflective, translational, and rotational. We report the results of a human subjects experiment to determine what types of symmetries are more salient in drawings of graphs. We found statistically significant evidence that vertical reflective symmetry is the most dominant (when selecting among vertical reflective, horizontal reflective, and translational). We also found statistically significant evidence that rotational symmetry is affected by the number of radial axes (the more, the better), with a notable exception at four axes.Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018
    corecore