125 research outputs found

    Impact of Staphylococcus aureus infection on the late lactation goat milk proteome: New perspectives for monitoring and understanding mastitis in dairy goats

    Get PDF
    The milk somatic cell count (SCC) is a standard parameter for monitoring intramammary infections (IMI) in dairy ruminants. In goats, however, the physiological increase in SCC occurring in late lactation heavily compromises its reliability. To identify and understand milk protein changes specifically related to IMI, we carried out a shotgun proteomics study comparing high SCC late lactation milk from goats with subclinical Staphylococcus aureus IMI and from healthy goats to low SCC mid-lactation milk from healthy goats. As a result, we detected 52 and 19 differential proteins (DPs) in S. aureus-infected and uninfected late lactation milk, respectively. Unexpectedly, one of the proteins higher in uninfected milk was serum amyloid A. On the other hand, 38 DPs were increased only in S. aureus-infected milk and included haptoglobin and numerous cytoskeletal proteins. Based on STRING analysis, the DPs unique to S. aureus infected milk were mainly involved in defense response, cytoskeleton organization, cell-to-cell, and cell-to-matrix interactions. Being tightly and specifically related to infectious/inflammatory processes, these proteins may hold promise as more reliable markers of IMI than SCC in late lactation goats. Significance: The biological relevance of our results lies in the increased understanding of the changes specifically related to bacterial infection of the goat udder in late lactation. The DPs present only in S. aureus infected milk may find application as markers for improving the specificity of subclinical mastitis monitoring and detection in dairy goats in late lactation, when other widespread tools such as the SCC lose diagnostic value

    Proteomic datasets of uninfected and Staphylococcus aureus-infected goat milk

    Get PDF
    We present a proteomic dataset generated from half-udder Alpine goat milk. The milk samples belonged to 3 groups: i) mid-lactation, low somatic cell count, uninfected milk (MLU, n=3); ii) late lactation, high somatic cell count, uninfected milk (LHU, n=3); and late lactation, high somatic cell count, Staphylococcus aureus subclinically infected milk (LHS, n=3). The detailed description of results is reported in the research article entitled \u201cImpact of Staphylococcus aureus infection on the late lactation goat milk proteome: new perspectives for monitoring and understanding mastitis in dairy goats\u201d. After milk defatting, high speed centrifugation and trypsin digestion of milk with the FASP protocol, peptide mixtures were analyzed by LC-MS/MS on a Q-Exactive. Peptide identification was carried out using Sequest-HT in Proteome Discoverer. Then, the Normalized Abundance Spectrum Factor (NSAF) value was calculated by label free quantitation using the spectral counting approach, and Gene Ontology (GO) annotation by Uniprot was carried out by reporting biological process, molecular function and cellular component. The MS data have been deposited to the ProteomeXchange via the PRIDE with the dataset identifier PXD017243

    Diagnostic value of whole body bone scan in horses

    Get PDF
    Scintigraphy is widely used in the assessment of musculoskeletal disorders and often it is considered as a screening tool in lame or poor performing horses. It is proved that nuclear scintigraphy is useful in highlighting the presence of lesions undetectable by clinical examination, in horses that do not respond to local analgesic blocks or with intermittent lameness[1]. Despite the usefulness of bone scan is proven, in a recent report, Quiney et al. observed that false-negative results predominate and may lead to missed diagnosis[2]. The aim of this study is to analyze the diagnostic usefulness of whole body bone scan in horses referred for lameness or poor performance. For this retrospective study, bone scans acquired at the Ospedale Veterinario Universitario di Lodi between July 2014 and February 2019 were reviewed. In the study have been included only horses that had a whole body bone scan. On the basis of the history, horses were classified as poor performing, for localized lameness or non-localized lameness. Scintigraphic findings were organized in five categories: definitive diagnosis, localization of the lameness, no findings related to the present clinical signs, findings of unlikely clinical significance and findings that need further investigations. A contingency table and a chi-squared test were used for the statistical analysis. One hundred and eighty horses underwent scintigraphy and 102 were included in the study; twenty-one horses were referred for lameness localized using diagnostic analgesia while in 44 horses the source of lameness was not identified. Thirty-seven horses had an history of poor performance. Statistical analysis highlighted that the only correlation between clinical history and scintigraphic findings was between horse referred for poor performance and findings of unlikely clinical significance (59,5% of horses with a poor performance diagnosis). A final diagnosis or localization of the source of pain were observed respectively in the 5.9% and in the 29.4% of horses. In 11 subjects (10.8%) were found increased radiopharmaceutical uptakes (IRU) of uncertain clinical significant that needed further investigations using analgesic blocks. In the 20% of cases, all referred for lameness, no findings related to the present clinical signs were found. In order to increase the capability of bone scintigraphy, it is mandatory to consider that the sensitivity and specificity are higher in specific regions[2] and the interpretation of the relevance of IRU must be based on detailed clinical examination. In conclusion, we confirm that whole body bone scintigraphy should not be considered a diagnostic screening especially in poor performing horses and that localization of lameness can improve the possibility of a positive result. [1] Dyson S.J. Musculoskeletal scintigraphy of the equine athlete. Semin Nucl Med, 44:4-14, 2014. [2] Quiney L., Ireland J., Dyson S.J. Evaluation of the diagnostic accuracy of skeletal scintigraphy in lame and poorly performing sports horses. Vet Radiol Ultrasound, 59:477-489, 2018

    Milk cathelicidin and somatic cell counts in dairy goats along the course of lactation

    Get PDF
    This research communication reports the evaluation of cathelicidin in dairy goat milk for its relationship with the somatic cell count (SCC) and microbial culture results. Considering the limited performances of SCC for mastitis monitoring in goats, there is interest in evaluating alternative diagnostic tools. Cathelicidin is an antimicrobial protein involved in innate immunity of the mammary gland. In this work, half-udder milk was sampled bimonthly from a herd of 37 Alpine goats along an entire lactation and tested with the cathelicidin ELISA together with SCC and bacterial culture. Cathelicidin and SCC showed a strong correlation (r = 0.72; n = 360 milk samples). This was highest in mid-lactation (r = 0.83) and lowest in late lactation (r = 0.61), and was higher in primiparous (0.80, n = 130) than in multiparous goats (0.71, n = 230). Both markers increased with stage of lactation, but cathelicidin increased significantly less than SCC. Inaddition, peak level in late lactation was lower for cathelicidin (5.05-fold increase) than for SCC (7.64-fold increase). Twenty-one (5.8%) samples were positive to bacteriological culture, 20 for coagulase-negative staphylococci and one for Streptococcus spp.; 18 of them were positive to the cathelicidin ELISA (85.71% sensitivity). Sensitivity of SCC >500 000 and of SCC >1 000 000 cells/ml was lower (71.43 and 23.81%, respectively). Therefore, the high correlation of cathelicidin with SCC during the entire lactation, along with its lower increase in late lactation and good sensitivity indetecting intramammary infection (IMI), indicate a potential for monitoring subclinical mastitis in dairy goats. However, based on this preliminary assessment, specificity should be improved (40.41% for cathelicidin vs. 54.57 and 67.85% for SCC >500 000 and >1 000 000 cells/ml, respectively). Therefore, the application of cathelicidin for detecting goat IMI will require further investigation and optimization, especially concerning the definition of diagnostic thresholds

    Relationship of Late Lactation Milk Somatic Cell Count and Cathelicidin with Intramammary Infection in Small Ruminants

    Get PDF
    Late lactation is a critical moment for making mastitis management decisions, but in small ruminants the reliability of diagnostic tests is typically lower at this stage. We evaluated somatic cell counts (SCC) and cathelicidins (CATH) in late lactation sheep and goat milk for their relationship with intramammary infections (IMI), as diagnosed by bacteriological culture (BC). A total of 315 sheep and 223 goat half-udder milk samples collected in the last month of lactation were included in the study. IMI prevalence was 10.79% and 15.25%, respectively, and non-aureus staphylococci were the most common finding. Taking BC as a reference, the diagnostic performance of SCC and CATH was quite different in the two species. In sheep, receiver operating characteristic (ROC) analysis produced a higher area under the curve (AUC) value for CATH than SCC (0.9041 versus 0.8829, respectively). Accordingly, CATH demonstrated a higher specificity than SCC (82.92% versus 73.67%, respectively) at comparable sensitivity (91.18%). Therefore, CATH showed a markedly superior diagnostic performance than SCC in late lactation sheep milk. In goats, AUC was <0.67 for both parameters, and CATH was less specific than SCC (61.90% versus 65.08%) at comparable sensitivity (64.71%). Therefore, both CATH and SCC performed poorly in late lactation goats. In conclusion, sheep can be screened for mastitis at the end of lactation, while goats should preferably be tested at peak lactation. In late lactation sheep, CATH should be preferred over SCC for its higher specificity, but careful cost/benefit evaluations will have to be made

    The Role of Innate Immune Response and Microbiome in Resilience of Dairy Cattle to Disease: The Mastitis Model

    Get PDF
    Animal health is affected by many factors such as metabolic stress, the immune system, and epidemiological features that interconnect. The immune system has evolved along with the phylogenetic evolution as a highly refined sensing and response system, poised to react against diverse infectious and non-infectious stressors for better survival and adaptation. It is now known that high genetic merit for milk yield is correlated with a defective control of the inflammatory response, underlying the occurrence of several production diseases. This is evident in the mastitis model where high-yielding dairy cows show high disease prevalence of the mammary gland with reduced effectiveness of the innate immune system and poor control over the inflammatory response to microbial agents. There is growing evidence of epigenetic effects on innate immunity genes underlying the response to common microbial agents. The aforementioned agents, along with other non-infectious stressors, can give rise to abnormal activation of the innate immune system, underlying serious disease conditions, and affecting milk yield. Furthermore, the microbiome also plays a role in shaping immune functions and disease resistance as a whole. Accordingly, proper modulation of the microbiome can be pivotal to successful disease control strategies. These strategies can benefit from a fundamental re-appraisal of native cattle breeds as models of disease resistance based on successful coping of both infectious and non-infectious stressors

    Determination of fatty acids profile in original brown cows dairy products and relationship with alpine pasture farming system

    Get PDF
    This study aimed to evaluate the relationships between fatty acids and the pattern that most contributes to discriminate between two farming systems, in which the main difference was the practice, or not, of alpine summer-grazing. Milk and cheese were sampled every month in two farms of Original Brown cows identical under geographical location and management during no grazing season point of view in the 2018 season. Fatty acids concentrations were determined by gas chromatography. The principal component analysis extracted three components (PCs). Mammary gland de novo synthetized fatty acids (C14:0, C14:1 n9, and C16:0) and saturated and monosaturated C18 fatty acids (C18:0, C18:1 n9c) were inversely associated in the PC1; PC2 included polyunsaturated C18 fatty acids (C18:2 n6c, C18:3 n3) and C15:0 while conjugated linoleic acid (CLA n9c, n11t) and fatty acids containing 20 or more carbon atoms (C21:0, C20:5 n3) were associated in the PC3. The processes of rumen fermentation and de novo synthesis in mammary gland that are, in turn, influenced by diet, could explain the relationships between fatty acids within each PC. The discriminant analyses showed that the PC2 included the fatty acids profile that best discriminated between the two farming systems, followed by PC3 and, lastly, PC1. This model, if validated, could be an important tool to the dairy industry

    Pentraxin 3 is up-regulated in epithelial mammary cells during Staphylococcus aureus intra-mammary infection in goat

    Get PDF
    Pentraxin 3 is the prototypic long pentraxin and is produced by different cell populations (dendritic cells, monocytes/macrophages, endothelial cells, and fibroblasts) after pro-inflammatory stimulation. Different studies demonstrated the up-regulation of PTX3 during mastitis in ruminants, but its role is still unknown. We first investigated the conservation of PTX3 sequence among different species and its pattern of expression in a wide panel of organs from healthy goats. We studied the role modulation of PTX3 during natural and experimental mammary infection, comparing its expression in blood, milk and mammary tissues from healthy and Staphylococcus aureus infected animals. We confirmed the high conservation of the molecule among the different species. Goat PTX3 was expressed at high levels in bone marrow, mammary gland, aorta, rectum, pancreas, skin and lungs. PTX3 was up-regulated in epithelial mammary cells and in milk cells after S. aureus infection, suggesting that it represents a first line of defense in goat udder

    Proteomic changes in the milk of water buffaloes (Bubalus bubalis) with subclinical mastitis due to intramammary infection by Staphylococcus aureus and by non-aureus staphylococci

    Get PDF
    Subclinical mastitis by Staphylococcus aureus (SAU) and by non-aureus staphylococci (NAS) is a major issue in the water buffalo. To understand its impact on milk, 6 quarter samples with >3,000,000 cells/ mL (3 SAU-positive and 3 NAS-positive) and 6 culture-negative quarter samples with <50,000 cells/ mL were investigated by shotgun proteomics and label-free quantitation. A total of 1530 proteins were identified, of which 152 were significantly changed. SAU was more impacting, with 162 vs 127 differential proteins and higher abundance changes (P < 0.0005). The 119 increased proteins had mostly structural (n = 43, 28.29%) or innate immune defence functions (n = 39, 25.66%) and included vimentin, cathelicidins, histones, S100 and neutrophil granule proteins, haptoglobin, and lysozyme. The 33 decreased proteins were mainly involved in lipid metabolism (n = 13, 59.10%) and included butyrophilin, xanthine dehydrogenase/oxidase, and lipid biosynthetic enzymes. The same biological processes were significantly affected also upon STRING analysis. Cathelicidins were the most increased family, as confirmed by western immunoblotting, with a stronger reactivity in SAU mastitis. S100A8 and haptoglobin were also validated by western immunoblotting. In conclusion, we generated a detailed buffalo milk protein dataset and defined the changes occurring in SAU and NAS mastitis, with potential for improving detection (ProteomeXchange identifier PXD012355)

    Short communication : Circulating extracellular miR-22, miR-155, and miR-365 as candidate biomarkers to assess transport-related stress in turkeys

    Get PDF
    MicroRNA (miRNA) have been identified in circulating blood and might have the potential to be used as biomarkers for several pathophysiological conditions. To identify miRNA that are altered following stress events, turkeys (Meleagris gallopavo) were subjected to 2 h of road transportation. The expression levels of five circulating miRNA, namely miR-22, miR-155-5p, miR-181a-3p, miR-204 and miR-365-3p, were detected and assessed by quantitative polymerase chain reaction using TaqMan\uae probes, as potential biomarkers of stress. The areas under the receiver operating characteristic curves were then used to evaluate the diagnostic performance of miRNA. A panel of three stress-responsive miRNA, miR-22, miR-155 and miR-365 were identified; their expression levels were significantly higher after road transportation and the area under the curve (AUC) were 0.763, 0.71 and 0.704, respectively. Combining the three miRNA a specificity similar to the one found for the three miRNA separately was found. The AUC of the weighted average of the three miRNA was 0.763. This preliminary study suggests that the expression levels of circulating miR-22, miR-155 and miR-365 are increased during transport-related stress and that they may have diagnostic value to discriminate between stressed- and unstressed animals
    • …
    corecore