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Abstract 16 

The milk somatic cell count (SCC) is a standard parameter for monitoring intramammary infections (IMI) in 17 

dairy ruminants. In goats, however, the physiological increase in SCC occurring in late lactation heavily 18 

compromises its reliability. To identify and understand milk protein changes specifically related to IMI, we 19 

carried out a shotgun proteomics study comparing high SCC late lactation milk from goats with subclinical 20 

Staphylococcus aureus IMI and from healthy goats to low SCC mid-lactation milk from healthy goats. As a 21 

result, we detected 52 and 19 differential proteins (DPs) in S. aureus-infected and uninfected late lactation 22 

milk, respectively. Unexpectedly, one of the proteins higher in uninfected milk was serum amyloid A. On the 23 

other hand, 38 DPs were increased only in S. aureus-infected milk and included haptoglobin and numerous 24 

cytoskeletal proteins. Based on STRING analysis, the DPs unique to S. aureus infected milk were mainly 25 

involved in defense response, cytoskeleton organization, cell-to-cell, and cell-to-matrix interactions. Being 26 

tightly and specifically related to infectious/inflammatory processes, these proteins may hold promise as 27 

more reliable markers of IMI than SCC in late lactation goats. 28 

 29 

Significance 30 

The biological relevance of our results lies in the increased understanding of the changes specifically related 31 

to bacterial infection of the goat udder in late lactation. The DPs present only in S. aureus infected milk may 32 

find application as markers for improving the specificity of subclinical mastitis monitoring and detection in 33 

dairy goats in late lactation, when other widespread tools such as the SCC lose diagnostic value. 34 

 35 

Keywords: 36 

Goat mastitis; late lactation milk; Staphylococcus aureus; somatic cell count; shotgun proteomics; 37 

haptoglobin.  38 
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1. Introduction 39 

Intramammary infections (IMI) and mastitis cause milk production losses and reduce dairy goat product 40 

quality. Subclinical mastitis due to chronic IMI can be especially problematic, and reliable monitoring and 41 

detection tools are needed for maintaining good profitability of goat productions [1]. The somatic cell count 42 

(SCC), that is, the number of cells per mL of milk, is largely considered a reliable IMI indicator in dairy 43 

ruminants [2]. In goats, however, the SCC is subjected to physiological variations related to age, parity, stage 44 

of lactation, estrus, and other factors [3–5], undermining specificity and limiting the diagnostic value of this 45 

practical and cost-effective marker. Late lactation, in particular, is associated with SCC increase in cow, sheep 46 

and goat milk [6], but the magnitude of this increase in goats is so high that SCC may not enable to distinguish 47 

infected from uninfected udders in late lactation [3,7,8]. Consequently, the reliability of the most widespread 48 

field tool, the California Mastitis Test (CMT), is severely affected [9]. The availability of a protein marker 49 

appearing in the milk only upon infection would increase the specificity of subclinical mastitis detection and 50 

support the screening of late lactation goats for IMI, enabling more meaningful management decisions 51 

especially at the dry-off [10,11]. 52 

The widespread adoption of milk SCC as an indicator of IMI is based on the notion that the number of cells 53 

in milk increases due to the active influx of neutrophils recalled into the milk as a result of the inflammation 54 

elicited by a microbial insult. Being this accompanied by increased permeability of the blood-milk barrier, 55 

with consequent leakage of serum contents into the milk, other ways to detect subclinical mastitis are based 56 

on these “leaked” proteins and other molecules found in the milk as a result of active secretion, cellular lysis 57 

or tissue rearrangements [11]. Investigating the proteome changes specifically associated with subclinical IMI 58 

is a suitable way to identify marker proteins that may represent a reliable alternative when the SCC loses 59 

specificity.  60 

Gram-positive bacteria, and staphylococci in particular, are the most prevalent intramammary pathogens in 61 

dairy goats [12–15]. Gram-positive bacteria cause mainly subclinical, chronic infections that persist along the 62 

dry period [6,8] justifying the need for more sensitive and specific screening tools for monitoring mammary 63 
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gland health in dairy goats. Therefore, we selected Staphylococcus aureus subclinical IMI as the model 64 

condition for this study. 65 

In summary, we applied a shotgun proteomics pipeline to compare late lactation, high SCC, S. aureus infected 66 

and uninfected milk with mid-lactation, low SCC uninfected milk to understand the changes induced by 67 

infection and to identify differential proteins with potential as subclinical mastitis markers in late lactation. 68 

 69 

2. Materials and methods 70 

 71 

2.1. Animals and milk samples 72 

Half-udder goat milk was retrieved from a frozen sample bank collected along the course of two entire 73 

lactations in a herd of Alpine goats farmed in Lombardy, Italy. All goats were clinically healthy for the two 74 

lactation years and showed no signs of mastitis. The detailed description of the herd and of experimental 75 

procedures was reported in a previous work [3]. Briefly, bacteriological analysis was carried out bi-monthly 76 

according to the National Mastitis Council standards [16] as described previously [17]. Ten µl of milk was 77 

spread on blood agar plates and incubated aerobically at 37°C. After 24 h, plates were examined, and colonies 78 

were provisionally identified based on Gram stain, morphology, and haemolysis patterns. Gram-positive cocci 79 

were tested for catalase and coagulase production for identification as Staphylococcus aureus, and colonies 80 

were re-isolated on Baird-Parker medium for further confirmation. Somatic cell count (SCC) was measured 81 

with an automated somatic cell counter (Bentley Somacount 150, Bentley Instrument, USA) [3]. Nine samples 82 

from multiparous goats were selected for the current study as follows: i) three mid-lactation samples (40±10 83 

Days in milk - DIM) with very low SCC (19,000±7000) from half-udders producing a sterile milk bacterial 84 

culture for two consecutive samplings (MLU, Mid-lactation, Low SCC, Uninfected); ii) three late lactation 85 

samples (> 250 DIM) with SCC > 2,000,000 cells/mL (2,932,000±439,000) from half-udders producing a sterile 86 

milk bacterial culture for the whole lactation (LHU, Late lactation, High SCC, Uninfected); and iii) three late 87 

lactation samples (> 250 DIM) with SCC > 2,000,000 cells/mL (3,980,000±74,000) from goat half-udders with 88 

a milk bacterial culture repeatedly positive for S. aureus in the previous lactation year (LHS, Late lactation, 89 
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High SCC, Staphylococcus aureus infected). S. aureus positive goats were culled at the end of lactation in the 90 

first year. The whole herd tested negative to S. aureus in the second year, when MLU and LHU samples were 91 

collected. The SCC > 2,000,000 cells/mL threshold was selected because the California Mastitis Test (CMT) 92 

scores are the highest over this value. 93 

 94 

2.2. Milk sample preparation for proteomic analysis 95 

Milk sample preparation for proteomic analysis was carried out as described previously [17]. Briefly, milk was 96 

allowed to thaw at room temperature and centrifuged at 800 x g at 4°C for 10 min, the fat ring was removed, 97 

and skim milk was diluted 1:1 with lysis buffer, incubated at 95°C for 10 min and sonicated in a refrigerated 98 

water bath for 10 min, after which the suspension was centrifuged at 10.000 x g for 10 min at 4°C. Then, 7 µl 99 

of extract was subjected to filter-aided sample preparation (FASP) [18]. Protein samples were reduced, 100 

alkylated, and digested with trypsin on 3 kDa cut-off Amicon Ultra-0.5 mL centrifugal filter units (Millipore, 101 

Billerica, MA, USA). Peptide concentration was determined with a NanoDrop 2000 spectrophotometer 102 

(Thermo Scientific, San Jose, CA, USA). 103 

 104 

2.3. Tandem mass spectrometry analysis of peptides 105 

All peptide mixtures were analysed on a Q-Exactive interfaced with an UltiMate 3000 RSLCnanoLC system 106 

(Thermo Scientific, San Jose, CA, USA), as detailed previously [19], using 4 µg of peptide mixture. Protein 107 

identification was carried out with Proteome Discoverer (version 1.4; Thermo Scientific) and Sequest-HT as 108 

the search engine. MS/MS spectra were analyzed as follows. Database: custom, obtained by merging Bos 109 

taurus, Capra hircus and Staphylococcus databases. These were downloaded from Swiss-Prot (Bos taurus) 110 

and TrEMBL (Capra hircus and Staphylococcus) release2017_05 and 2016_11, respectively; enzyme: trypsin, 111 

with two missed cleavages allowed; precursor mass tolerance: 10 ppm; MS/MS tolerance: 0.02 Da; charge 112 

states: +2, +3, and +4; cysteine carbamidomethylation as static modification and methionine oxidation as 113 

dynamic modifications. The percolator algorithm was used for protein significance and for peptide validation 114 
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(false discovery rate, FDR, < 0.01). Peptide and protein grouping according to the Proteome Discoverer’s 115 

algorithm were allowed, applying the strict maximum parsimony principle. 116 

 117 

2.4. Proteomic data analysis 118 

Protein abundance changes were assessed by the spectral counting (SpC) approach as described previously 119 

(Pisanu et al., 2019). When proteins had more than one entry, only those with the highest number of unique 120 

peptides and SpCs were considered. Only proteins identified in at least two biological replicates and having 121 

≥ 2 SpCs (Peptide Spectrum Matches, PSMs) in at least one sample of the group were considered for 122 

differential analysis. Relative abundance of single proteins in all samples and abundance changes of proteins 123 

between groups were calculated by considering the normalised spectral abundance factor (NSAF) and the RSC 124 

(the log2 of the protein abundance ratio), respectively [20,21]. Statistical significance was assessed by the 125 

beta-binomial test with FDR correction according to Benjamini-Hochberg [22]. Only proteins with RSC ≥ 1.0 or 126 

≤ -1.0 between the compared groups and having a p-value ≤ 0.05 were considered differential. The biological 127 

processes and molecular functions reported by UniProtKB database were used for gene ontology (GO) 128 

analysis of differential proteins (DPs), integrated with manual curation. Protein-protein interaction network 129 

was assessed with the STRING database (Version 11, http://string-db.org/), after replacing all Capra hircus 130 

UniProt IDs with the corresponding Bos taurus UniProt IDs using the Basic Local Alignment Search Tool 131 

(BLAST) [23] and by taking into account only functional interactions with high confidence (combined score > 132 

0.7) [24]. 133 

 134 

2.5. Data Availability 135 

The data have been deposited to the ProteomeXchange with identifier PXD017243 [25]. A complete 136 

description of the dataset is available in Pisanu et al., 2020 (Data in Brief, submitted). 137 

 138 

 139 

 140 
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3. Results 141 

 142 

3.1. Shotgun proteomics and differential analysis 143 

S. aureus infected and uninfected milk was subjected to a shotgun proteomics workflow combining FASP, RP-144 

HPLC, and high-resolution orbitrap MS. This led to the identification of 540 total unique proteins, of which 145 

256 eligible for differential analysis. The complete description of the proteomic datasets is available in Pisanu 146 

et al. 2020 (Data in Brief, submitted).  147 

To identify the changes specifically induced by S. aureus as opposed to the physiological changes occurring 148 

in late lactation, we compared late lactation, high SCC infected and uninfected milk with mid-lactation, low 149 

SCC uninfected milk. As a result, late lactation infected milk showed 52 significant DPs, while late lactation 150 

uninfected milk showed only 19 DPs. Results are summarised in Table 1 and are detailed in Supplementary 151 

file (sheets 1 and 2, respectively). The higher number of DPs in S. aureus positive milk indicated that the 152 

presence of S. aureus was more impacting on the milk proteome than the physiological late lactation changes 153 

alone. 154 

Table 2 lists all the DPs obtained in the two comparisons with the respective log2 ratio abundance values 155 

(RSC). Protein abundance changes were generally more intense in S. aureus infected milk, as most common 156 

DPs showed higher RSC values in this sample group. The top DPs in both S. aureus infected and uninfected 157 

milk were lactotransferrin and cathelicidin-2. Vimentin, the third top DP, changed significantly only in S. 158 

aureus infected milk. In uninfected milk, only complement C3, olfactomedin-like protein 3, and serum 159 

amyloid A showed higher RSC values, and only three DPs were unique: fatty acid synthase, calreticulin, and 160 

lactoperoxidase. On the other hand, 38 proteins showed significant changes only in S. aureus infected milk 161 

and are highlighted in bold in Table 2. 162 

 163 

3.2. Functional analysis 164 

The 38 DPs unique to S. aureus infected milk (Table 2, bold) were analyzed for their interactions and biological 165 

functions by STRING. Several proteins were strongly connected, such as tubulins with 14-3-3 proteins and 166 
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heat-shock proteins, myosin light chains, other cytoskeletal proteins, and proteins involved in cell-to-cell and 167 

cell-to-matrix interactions.  168 

Supplementary file, sheets 4-7, report the list of significant GO terms and pathways enriched for the 169 

categories Biological Process, KEGG Pathways, Cellular Component, INTERPRO Protein Domains and 170 

Features, and Reactome Pathways, respectively. The most relevant Biological Process GO terms and KEGG 171 

pathways are indicated in Figure 1A and in Figure 1B. 172 

 173 

4. Discussion 174 

Aim of this work was to detect and understand milk changes specifically related to IMI in dairy goats, 175 

especially focusing on late lactation, by differential label-free shotgun proteomics. This was also the first 176 

proteomic investigation of milk from goats with subclinical S. aureus mastitis. 177 

When comparing the DPs observed in late lactation S. aureus infected and uninfected milk, the number, 178 

identity, and abundance indicated that the presence of S. aureus had a specific and strong impact on the goat 179 

milk proteome. Although some DPs, especially those with the highest RSC values, were increased in both 180 

infected and uninfected milk, most were detected only in infected milk and are the most relevant for 181 

understanding the differences between the two conditions and for identifying useful mastitis markers. 182 

Lactotransferrin, cathelicidins, serum amyloid A, and haptoglobin are long known to increase in cow milk 183 

during mastitis [10,26–32] and have been evaluated as protein markers also in sheep and goats [3,33–35]. In 184 

this study, lactotransferrin and cathelicidins increased in late lactation S. aureus infected milk but increased 185 

also in late lactation uninfected milk, although at a slightly lower extent. These proteins might increase in the 186 

milk as a result of neutrophil influx, and as opposed to other dairy species, in goats this occurs also 187 

physiologically as lactation progresses [5]. This is in line with the observations recently made by our group 188 

when comparing the value of cathelicidins in late lactation sheep and goats [3] and, in spite of the great value 189 

in other dairy species, might reduce mastitis detection specificity in late lactation goats. 190 

On the other hand, the unexpected inverse behavior of serum amyloid A and haptoglobin was of significant 191 

interest. In fact, previous gel-based and gel-free proteomic studies carried out in goat milk are contrasting in 192 
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this respect. Olumee-Shabon et al. [36] observed a significant increase of both haptoglobin and serum 193 

amyloid A in agreement with previous studies in cows, while Wang et al. detected serum amyloid A but not 194 

haptoglobin [37]. However, both studies evaluated an experimentally induced lipopolysaccharide (LPS) 195 

mastitis, and specificities in the host response to Gram-negative and Gram-positive microorganisms might 196 

partly account for these differences [38,39]. This is especially relevant when considering that Gram-positive 197 

bacteria are by far the leading intramammary pathogens in dairy goats, with Staphylococcus being the most 198 

prevalent genus [12–15]. Staphylococcus spp. also cause mainly chronic, subclinical infections that persist 199 

along the dry period [8] justifying the need for more sensitive and specific screening tools. In our study, serum 200 

amyloid A was increased in high SCC milk, but such increase was not specific for the presence of an infection; 201 

actually, the RSC value was higher in uninfected (2.41) than in S. aureus infected (1.21) milk, raising the 202 

question that it might be related to physiological rather than pathological processes. On the other hand, 203 

haptoglobin increased significantly only in S. aureus infected milk (RSC = 1.70). Therefore, haptoglobin might 204 

have potential as a specific mastitis marker also in late lactation, high SCC goat milk. A dedicated study with 205 

large sample numbers, different etiological agents, and thoroughly validated antibodies will be needed to 206 

further investigate this finding. 207 

The STRING protein network analysis provided interesting information on the biological processes and 208 

pathways involving the 38 DPs detected only in S. aureus infected milk. Notably, tight junction, regulation of 209 

the actin cytoskeleton and leukocyte transendothelial migration were among the most significant KEGG 210 

pathways highlighted by STRING analysis. Tight junctions participate actively in regulating the passage of 211 

blood-derived antimicrobial factors, cytokines, and neutrophils [40,41]. Accordingly, loss of tight junction 212 

integrity has been linked to reduced milk secretion and increased paracellular mixture of serum and milk 213 

components [42,43]. The specific function of haptoglobin in the context of mammary gland inflammation is 214 

mainly attributed to hemoglobin scavenging to inhibit its oxidative activity [44], but the full-length precursor 215 

of haptoglobin, zonulin, increases epithelial permeability by mediating intercellular tight junction 216 

disassembly [45]. Altogether, this suggests that its increase only in late lactation infected milk might be a 217 
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specific consequence of the blood-milk barrier dynamics related to inflammation [42,43,46–48] and 218 

highlights its potential as specific goat mastitis marker. 219 

The highest RSC value for proteins increased only in S. aureus infected milk was observed for vimentin, a highly 220 

abundant intermediate filament protein [49] involved in the innate immune response to pathogens [50] by 221 

regulating inflammasome activity [51]. Vimentin was one of the top 15 up-regulated proteins at 57, 81, and 222 

312 hours after intramammary challenge of cows with Streptococcus uberis [52], and it was the first DP in 223 

the milk of buffaloes with S. aureus IMI [17]. Several members of the annexin family were also significantly 224 

higher in S. aureus-infected milk. Annexins are involved in vesicular trafficking and might be increased as a 225 

result of cell degranulation, especially by neutrophils [59]. Interestingly, clumping factor A of S. aureus 226 

interacts with annexin A2 on mammary epithelial cells mediating its entry into the host cell [60]. The increase 227 

in apolipoprotein A4 only in infected milk is in line with the observations of Olumee-Shabon et al. in the milk 228 

of goats challenged with LPS [36]. 229 

Other DPs increased also in late lactation, uninfected milk. Among other causes, these might be the result of 230 

physiological processes involved in mammary gland tissue dynamics and recycling associated with the natural 231 

involution of the mammary gland at the cessation of lactation [6,53]. 232 

In conclusion, this work provided the first characterization of S. aureus infected goat milk; identified the 233 

differences between infected and uninfected late lactation, high SCC milk; identified several proteins that are 234 

increased in milk only upon infection; provided insights on the mechanisms leading to the specific changes 235 

found in the milk proteome when an IMI is present; and, most importantly, identified putative markers that 236 

might improve specificity of subclinical mastitis detection and enable more meaningful management 237 

decisions especially in late lactation, when the diagnostic value of SCC is reduced. 238 
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Figure Legends 425 

 426 

Figure 1. STRING interaction networks of the proteins significantly changed only in S. aureus infected 427 

milk. Proteins associated with relevant statistically significant Biological Process GO terms (A) and KEGG 428 

Pathways (B) are marked with different colors as indicated. Gene names correspond to the proteins 429 

reported in Table 2.  430 
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TABLES 431 

Table 1. Summary of differential proteomic results.  432 

 Eligible for 
comparison* 

Changed** Differential*** 
RSC ≤ -1.0 or ≥ 1.0 

Increased***  
RSC ≥ 1.0 

Decreased***  
RSC ≤ -1.0 

Infectedb 243 62 52 52 0 
Uninfectedb 152 20 19 18 1 

aLate lactation S. aureus infected milk vs mid-lactation uninfected milk. bLate lactation uninfected milk 433 

vs mid-lactation uninfected milk. *Proteins identified in at least two biological replicates and with ≥2 434 

spectral counts in at least one sample of the experimental group. **p ≤ 0.05 by the beta-binomial test 435 

with FDR correction according to Benjamini-Hochberg. *** p ≤ 0.05 by the beta-binomial test with FDR 436 

correction according to Benjamini-Hochberg and RSC ≤ -1.0 or ≥ 1.0. 437 

  438 
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Table 2. Significantly differential proteins observed in late lactation S. aureus infected and uninfected milk 439 

in comparison to mid-lactation uninfected milk. The respective RSC values are reported for all the differential 440 

proteins in the two comparisons. Bold: proteins significantly increased only in infected milk. 441 

Accession Gene name Description Infecteda* Uninfectedb* 

Q29477 LTF Lactotransferrin  4.22 4.05 
P82018 CATHL2 Cathelicidin-2  3.30 2.75 
P48616 VIM Vimentin  3.01 - 
Q9XSJ4 ENO1 Alpha-enolase  2.98 1.90 
P46193 ANXA1 Annexin A1  2.84 2.24 
P62808 HIST1H2B Histone H2B type 1  2.74 2.12 
P60712 ACTA1 Actin, cytoplasmic 1  2.49 1.74 
Q8SPQ0 CHI3L1 Chitinase-3-like protein 1  2.38 2.12 
P62803 H4 Histone H4  2.37 1.71 
Q2UVX4 C3 Complement C3  2.35 2.62 
P07589 FN1 Fibronectin  2.33 - 
Q28178 THBS1 Thrombospondin-1  2.33 - 
A5D7D1 ACTN4 Alpha-actinin-4  2.24 1.10 
P02584 PFN1 Profilin-1  2.15 1.10 
P68138 ACTA1 Actin, alpha skeletal muscle  2.10 1.23 
Q2KJD0 TUBB Tubulin beta-5 chain  2.10 - 
Q3MHM5 TUBB4B Tubulin beta-4B chain  2.05 - 
P62871 GNB1 Guanine nucleotide-binding protein G(I)/G(S)/G(T) sub β-1  2.00 - 
Q3B7N2 ACTN1 Alpha-actinin-1  2.00 - 
Q5VI41 ITGB2 Integrin beta-2  2.00 - 
P10096 GAPDH Glyceraldehyde-3-phosphate dehydrogenase  1.88 - 
A7E3Q8 PLS3 Plastin-3  1.88 - 
Q71SP7 FASN Fatty acid synthase  - 1.85 
Q3SWX7 ANXA3 Annexin A3  1.82 - 
P31976 EZR Ezrin  1.76 1.65 
Q2TBU0 HP Haptoglobin 1.70 - 
P63103 YWHAZ 14-3-3 protein zeta/delta 1.70 - 
P60661 MYL6 Myosin light polypeptide 6  1.63 - 
P68250 YWHAB 14-3-3 protein beta/alpha  1.56 - 
Q5E956 TPI1 Triosephosphate isomerase  1.70 1.56 
P02253 HIST1H1C Histone H1.2 1.48 - 
Q3SZI4 YWHAQ 14-3-3 protein theta 1.48 - 
O18739 CTGF Connective tissue growth factor  1.48 - 
P81947 TUBA1B Tubulin alpha-1B chain  1.48 - 
Q0VCP3 OLFML3 Olfactomedin-like protein 3  1.23 1.45 
Q76LV2 HSP90AA1 Heat shock protein HSP 90-alpha  1.42 - 
P81287 ANXA5 Annexin A5  1.40 - 
Q3SX14 GSN Gelsolin  1.38 - 
Q32PJ2 APOA4 Apolipoprotein A-IV  1.38 - 
Q3T0P6 PGK1 Phosphoglycerate kinase 1 1.32 - 
Q92176 CORO1A Coronin-1A  1.32 - 
P21809 BGN Biglycan  1.23 - 
Q76LV1 HSP90AB1 Heat shock protein HSP 90-beta  1.23 - 
P62157 CALM2 Calmodulin  1.23 - 
Q03247 APOE Apolipoprotein E  1.22 -. 
P35541 SAA2 Serum amyloid A protein  1.21 2.41 
P62261 YWHAE 14-3-3 protein epsilon  1.14 - 
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Accession Gene name Description Infecteda* Uninfectedb* 

P04272 ANXA2 Annexin A2  1.14 - 
P0C0S9 HIST1H2AG Histone H2A type 1  1.14 - 
Q29443 TF Serotransferrin  1.13 - 
P52193 CALR Calreticulin  - 1.10 
A4IF97 MYL12B Myosin regulatory light chain 12B  1.04 - 
Q6B855 TKT Transketolase  1.04 - 
P01030 C4 Complement C4  1.04 - 
Q2KIS7 CLEC3B Tetranectin 1.04 - 
Q5KR47 TPM1 Tropomyosin alpha-3 chain 1.04 - 
P80025 LPO Lactoperoxidase - -1.04 
aLate lactation, high SCC, S. aureus-infected milk vs mid-lactation, low SCC, uninfected milk. bLate lactation, high SCC, 442 
uninfected milk vs mid-lactation, low SCC, uninfected milk. *RSC ≥ 1.0 or ≤ -1.0 and p-value ≤ 0.05 with FDR correction 443 
according to Benjamini-Hochberg. 444 
 445 

 446 


