9,579 research outputs found
Quantum suppression of shot noise in atom-size metallic contacts
The transmission of conductance modes in atom-size gold contacts is
investigated by simultaneously measuring conductance and shot noise. The
results give unambiguous evidence that the current in the smallest gold
contacts is mostly carried by nearly fully transmitted modes. In particular,
for a single-atom contact the contribution of additional modes is only a few
percent. In contrast, the trivalent metal aluminum does not show this property.Comment: Fig. 2 replaced, small errors correcte
Unifying Magnons and Triplons in Stripe-Ordered Cuprate Superconductors
Based on a two-dimensional model of coupled two-leg spin ladders, we derive a
unified picture of recent neutron scattering data of stripe-ordered
La_(15/8)Ba_(1/8)CuO_4, namely of the low-energy magnons around the
superstructure satellites and of the triplon excitations at higher energies.
The resonance peak at the antiferromagnetic wave vector Q_AF in the
stripe-ordered phase corresponds to a saddle point in the dispersion of the
magnetic excitations. Quantitative agreement with the neutron data is obtained
for J= 130-160 meV and J_cyc/J = 0.2-0.25.Comment: 4 pages, 4 figures included updated version taking new data into
account; factor in spectral weight corrected; Figs. 2 and 4 change
Ageing effects around the glass and melting transitions in poly(dimethylsiloxane) visualized by resistance measurements
The process of ageing in rubbers requires monitoring over long periods (days
to years). To do so in non-conducting rubbers, small amounts of carbon-black
particles were dispersed in a fractal network through the rubber matrix, to
make the rubber conducting without modifying its properties. Continuous
monitoring of the resistance reveals the structural changes around the glass
and melting transitions and especially details about the hysteresis and ageing
processes. We illustrate the method for the semicrystalline polymer
poly(dimethylsiloxane) (PDMS).Comment: 4 pages, 4 figure
Reduction of Coxiella burnetii prevalence by vaccination of goats and sheep, the Netherlands
Recently, the number of human Q fever cases in the Netherlands increased dramatically. In response to this increase, dairy goats and dairy sheep were vaccinated against Coxiella burnetii. All pregnant dairy goats and dairy sheep in herds positive for Q fever were culled. We identified the effect of vaccination on bacterial shedding by small ruminants. On the day of culling, samples of uterine fluid, vaginal mucus, and milk were obtained from 957 pregnant animals in 13 herds. Prevalence and bacterial load were reduced in vaccinated animals compared with unvaccinated animals. These effects were most pronounced in animals during their first pregnancy. Results indicate that vaccination may reduce bacterial load in the environment and human exposure to C. burnetii
A quantitative evaluation of metallic conduction in conjugated polymers
As the periodicity in crystalline materials creates the optimal condition for
electronic delocalization, one might expect that in partially crystalline
conjugated polymers delocalization is impeded by intergrain transport. However,
for the best conducting polymers this presumption fails. Delocalization is
obstructed by interchain rather than intergrain charge transfer and we propose
a model of weakly coupled disordered chains to describe the physics near the
metal-insulator transition. Our quantitative calculations match the outcome of
recent broad-band optical experiments and provide a consistent explanation of
metallic conduction in polymers.Comment: 4 pages incl. 3 figure
NMR evidence for two-step phase-separation in Nd_{1.85}Ce_{0.15}CuO_{4-delta}
By Cu NMR we studied the spin and charge structure in
Nd_{2-x}Ce_{x}CuO_{4-delta}. For x=0.15, starting from a superconducting
sample, the low temperature magnetic order in the sample reoxygenated under 1
bar oxygen at 900^0 C, reveals a peculiar modulation of the internal field,
indicative for a phase characterized by large charge droplets ('Blob'-phase).
By prolonged reoxygenation at 4 bar the blobs brake up and the spin structure
changes to that of an ordered antiferromagnet (AF). We conclude that the
superconductivity in the n-type systems competes with a genuine type I
Mott-insulating state
Superconductivity in a Molecular Metal Cluster Compound
Compelling evidence for band-type conductivity and even bulk
superconductivity below K has been found in
Ga-NMR experiments in crystalline ordered, giant Ga
cluster-compounds. This material appears to represent the first realization of
a theoretical model proposed by Friedel in 1992 for superconductivity in
ordered arrays of weakly coupled, identical metal nanoparticles.Comment: 5 pages, 4 figure
Quantum suppression of shot noise in field emitters
We have analyzed the shot noise of electron emission under strong applied
electric fields within the Landauer-Buttiker scheme. In contrast to the
previous studies of vacuum-tube emitters, we show that in new generation
electron emitters, scaled down to the nanometer dimensions, shot noise much
smaller than the Schottky noise is observable. Carbon nanotube field emitters
are among possible candidates to observe the effect of shot-noise suppression
caused by quantum partitioning.Comment: 5 pages, 1 fig, minor changes, published versio
Shot noise suppression at room temperature in atomic-scale Au junctions
Shot noise encodes additional information not directly inferable from simple
electronic transport measurements. Previous measurements in atomic-scale metal
junctions at cryogenic temperatures have shown suppression of the shot noise at
particular conductance values. This suppression demonstrates that transport in
these structures proceeds via discrete quantum channels. Using a high frequency
technique, we simultaneously acquire noise data and conductance histograms in
Au junctions at room temperature and ambient conditions. We observe noise
suppression at up to three conductance quanta, with possible indications of
current-induced local heating and noise in the contact region at high
biases. These measurements demonstrate the quantum character of transport at
room temperature at the atomic scale. This technique provides an additional
tool for studying dissipation and correlations in nanodevices.Comment: 15 pages, 4 figures + supporting information (6 pages, 6 figures
- …
