533 research outputs found

    Molecular epidemiological investigation of multidrug-resistant Acinetobacter baumannii strains in four Mediterranean countries with a multilocus sequence typing scheme

    Get PDF
    Thirty-five multidrug-resistant Acinetobacter baumannii strains, representative of 28 outbreaks involving 484 patients from 20 hospitals in Greece, Italy, Lebanon and Turkey from 1999 to 2009, were analysed by multilocus sequence typing. Sequence type (ST)2, ST1, ST25, ST78 and ST20 caused 12, four, three, three and two outbreaks involving 227, 93, 62, 62 and 31 patients, respectively. The genes bla oxa-58, bla oxa-23 and bla oxa-72 were found in 27, two and one carbapenem-resistant strain, respectively. In conclusion, A. baumannii outbreaks were caused by the spread of a few strains

    Characterization of the cryptic Escherichia lineages: rapid identification and prevalence

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86967/1/j.1462-2920.2011.02519.x.pd

    Molecular Typing of Trypanosoma cruzi Isolates, United States

    Get PDF
    Studies have characterized Trypanosoma cruzi from parasite-endemic regions. With new human cases, increasing numbers of veterinary cases, and influx of potentially infected immigrants, understanding the ecology of this organism in the United States is imperative. We used a classic typing scheme to determine the lineage of 107 isolates from various hosts

    Tracking key virulence loci encoding aerobactin and salmochelin siderophore synthesis in Klebsiella pneumoniae.

    Get PDF
    BACKGROUND: Klebsiella pneumoniae is a recognised agent of multidrug-resistant (MDR) healthcare-associated infections; however, individual strains vary in their virulence potential due to the presence of mobile accessory genes. In particular, gene clusters encoding the biosynthesis of siderophores aerobactin (iuc) and salmochelin (iro) are associated with invasive disease and are common amongst hypervirulent K. pneumoniae clones that cause severe community-associated infections such as liver abscess and pneumonia. Concerningly, iuc has also been reported in MDR strains in the hospital setting, where it was associated with increased mortality, highlighting the need to understand, detect and track the mobility of these virulence loci in the K. pneumoniae population. METHODS: Here, we examined the genetic diversity, distribution and mobilisation of iuc and iro loci amongst 2503 K. pneumoniae genomes using comparative genomics approaches and developed tools for tracking them via genomic surveillance. RESULTS: Iro and iuc were detected at low prevalence (< 10%). Considerable genetic diversity was observed, resolving into five iro and six iuc lineages that show distinct patterns of mobilisation and dissemination in the K. pneumoniae population. The major burden of iuc and iro amongst the genomes analysed was due to two linked lineages (iuc1/iro1 74% and iuc2/iro2 14%), each carried by a distinct non-self-transmissible IncFIBK virulence plasmid type that we designate KpVP-1 and KpVP-2. These dominant types also carry hypermucoidy (rmpA) determinants and include all previously described virulence plasmids of K. pneumoniae. The other iuc and iro lineages were associated with diverse plasmids, including some carrying IncFII conjugative transfer regions and some imported from Escherichia coli; the exceptions were iro3 (mobilised by ICEKp1) and iuc4 (fixed in the chromosome of K. pneumoniae subspecies rhinoscleromatis). Iro/iuc mobile genetic elements (MGEs) appear to be stably maintained at high frequency within known hypervirulent strains (ST23, ST86, etc.) but were also detected at low prevalence in others such as MDR strain ST258. CONCLUSIONS: Iuc and iro are mobilised in K. pneumoniae via a limited number of MGEs. This study provides a framework for identifying and tracking these important virulence loci, which will be important for genomic surveillance efforts including monitoring for the emergence of hypervirulent MDR K. pneumoniae strains

    Ancient Origin and Gene Mosaicism of the Progenitor of Mycobacterium tuberculosis

    Get PDF
    The highly successful human pathogen Mycobacterium tuberculosis has an extremely low level of genetic variation, which suggests that the entire population resulted from clonal expansion following an evolutionary bottleneck around 35,000 y ago. Here, we show that this population constitutes just the visible tip of a much broader progenitor species, whose extant representatives are human isolates of tubercle bacilli from East Africa. In these isolates, we detected incongruence among gene phylogenies as well as mosaic gene sequences, whose individual elements are retrieved in classical M. tuberculosis. Therefore, despite its apparent homogeneity, the M. tuberculosis genome appears to be a composite assembly resulting from horizontal gene transfer events predating clonal expansion. The amount of synonymous nucleotide variation in housekeeping genes suggests that tubercle bacilli were contemporaneous with early hominids in East Africa, and have thus been coevolving with their human host much longer than previously thought. These results open novel perspectives for unraveling the molecular bases of M. tuberculosis evolutionary success

    PCR-Based Identification of Klebsiella pneumoniae subsp. rhinoscleromatis, the Agent of Rhinoscleroma

    Get PDF
    Rhinoscleroma is a chronic granulomatous infection of the upper airways caused by the bacterium Klebsiella pneumoniae subsp. rhinoscleromatis. The disease is endemic in tropical and subtropical areas, but its diagnosis remains difficult. As a consequence, and despite available antibiotherapy, some patients evolve advanced stages that can lead to disfiguration, severe respiratory impairment and death by anoxia. Because identification of the etiologic agent is crucial for the definitive diagnosis of the disease, the aim of this study was to develop two simple PCR assays. We took advantage of the fact that all Klebsiella pneumoniae subsp. rhinoscleromatis isolates are (i) of capsular serotype K3; and (ii) belong to a single clone with diagnostic single nucleotide polymorphisms (SNP). The complete sequence of the genomic region comprising the capsular polysaccharide synthesis (cps) gene cluster was determined. Putative functions of the 21 genes identified were consistent with the structure of the K3 antigen. The K3-specific sequence of gene Kr11509 (wzy) was exploited to set up a PCR test, which was positive for 40 K3 strains but negative when assayed on the 76 other Klebsiella capsular types. Further, to discriminate Klebsiella pneumoniae subsp. rhinoscleromatis from other K3 Klebsiella strains, a specific PCR assay was developed based on diagnostic SNPs in the phosphate porin gene phoE. This work provides rapid and simple molecular tools to confirm the diagnostic of rhinoscleroma, which should improve patient care as well as knowledge on the prevalence and epidemiology of rhinoscleroma

    Description of klebsiella spallanzanii sp. Nov. and of klebsiella pasteurii sp. nov

    Get PDF
    Klebsiella oxytoca causes opportunistic human infections and post-antibiotic haemorrhagic diarrhoea. This Enterobacteriaceae species is genetically heterogeneous and is currently subdivided into seven phylogroups (Ko1 to Ko4, Ko6 to Ko8). Here we investigated the taxonomic status of phylogroups Ko3 and Ko4. Genomic sequence-based phylogenetic analyses demonstrate that Ko3 and Ko4 formed well-defined sequence clusters related to, but distinct from, Klebsiella michiganensis (Ko1), Klebsiella oxytoca (Ko2), K. huaxiensis (Ko8) and K. grimontii (Ko6). The average nucleotide identity of Ko3 and Ko4 were 90.7% with K. huaxiensis and 95.5% with K. grimontii, respectively. In addition, three strains of K. huaxiensis, a species so far described based on a single strain from a urinary tract infection patient in China, were isolated from cattle and human faeces. Biochemical and MALDI-ToF mass spectrometry analysis allowed differentiating Ko3, Ko4 and Ko8 from the other K. oxytoca species. Based on these results, we propose the names Klebsiella spallanzanii for the Ko3 phylogroup, with SPARK_775_C1T (CIP 111695T, DSM 109531T) as type strain, and Klebsiella pasteurii for Ko4, with SPARK_836_C1T (CIP 111696T, DSM 109530T) as type strain. Strains of K. spallanzanii were isolated from human urine, cow faeces and farm surfaces, while strains of K. pasteurii were found in faecal carriage from humans, cows and turtles

    Analyses of 32 Loci Clarify Phylogenetic Relationships among Trypanosoma cruzi Lineages and Support a Single Hybridization prior to Human Contact

    Get PDF
    Trypanosoma cruzi is the protozoan parasite that causes Chagas disease, a major health problem in Latin America. The genetic diversity of this parasite has been traditionally divided in two major groups: T. cruzi I and II, which can be further divided in six major genetic subdivisions (subgroups TcI-TcVI). T. cruzi I and II seem to differ in important biological characteristics, and are thought to represent a natural division relevant for epidemiological studies and development of prophylaxis. Having a correct reconstruction of the evolutionary history of T. cruzi is essential for understanding the potential connection between the genetic and phenotypic variability of T. cruzi with the different manifestations of Chagas disease. Here we present results from a comprehensive phylogenetic analysis of T. cruzi using more than 26 Kb of aligned sequence data. We show strong evidence that T. cruzi II (TcII-VI) is not a natural evolutionary group but a paraphyletic lineage and that all major lineages of T. cruzi evolved recently (<3 million years ago [mya]). Furthermore, the sequence data is consistent with one major hybridization event having occurred in this species recently (< 1 mya) but well before T. cruzi entered in contact with humans in South America

    How we approach paediatric renal tumour core needle biopsy in the setting of preoperative chemotherapy: A Review from the SIOP Renal Tumour Study Group

    Get PDF
    The International Society of Paediatric Oncology Renal Tumour Study Group (SIOP-RTSG) advocate treating children with Wilms tumour (WT) with preoperative chemotherapy, whereas the Renal Tumor Committee of the Children's Oncology Group (COG) advocates primary nephrectomy (without biopsy) when feasible. Successive SIOP-RTSG trial protocols recommended pretreatment biopsy of children with unilateral tumours only where there were features to suggest an increased probability of a non-WT requiring a change in management. The UK experience in the SIOP WT 2001 trial showed that an alternate approach of performing biopsies on all children with renal tumour masses to determine histology at diagnosis rarely changes management, and can result in misdiagnosis (particularly patients in the age range typical for WT). Although a more selective approach to biopsy has been routine practice in all other countries participating in SIOP-RTSG trials, there was variation between national groups. To address this variation and provide evidence-based recommendations for the indications and recommended approach to renal tumour biopsy within the SIOP paradigm, an international, multidisciplinary working group of SIOP-RTSG members was convened. We describe the resulting recommendations of this group, which are to be incorporated in the ongoing SIOP-RTSG UMBRELLA study
    corecore