21 research outputs found

    The main actors involved in parasitization of Heliothis virescens larva

    Get PDF
    At the moment of parasitization by another insect, the host Heliothis larva is able to defend itself by the activation of humoral and cellular defenses characterized by unusual reactions of hemocytes in response to external stimuli. Here, we have combined light and electron microscopy, staining reactions, and immunocytochemical characterization to analyze the activation and deactivation of one of the most important immune responses involved in invertebrates defense, i.e., melanin production and deposition. The insect host/parasitoid system is a good model to study these events. The activated granulocytes of the host insect are a major repository of amyloid fibrils forming a lattice in the cell. Subsequently, the exocytosed amyloid lattice constitutes the template for melanin deposition in the hemocel. Furthermore, cross-talk between immune and neuroendocrine systems mediated by hormones, cytokines, and neuromodulators with the activation of stress-sensoring circuits to produce and release molecules such as adrenocorticotropin hormone, alpha melanocyte-stimulating hormone, and neutral endopeptidase occurs. Thus, parasitization promotes massive morphological and physiological modifications in the host insect hemocytes and mimics general stress conditions in which phenomena such as amyloid fibril formation, melanin polymerization, pro-inflammatory cytokine production, and activation of the adrenocorticotropin hormone system occur. These events observed in invertebrates are also reported in the literature for vertebrates, suggesting that this network of mechanisms and responses is maintained throughout evolution

    Haemocyte changes in resistant and susceptible strains of D. melanogaster caused by virulent and avirulent strains of the parasitic wasp Leptopilina boulardi

    No full text
    Abstract Two strains of Drosophila melanogaster (resistant and susceptible) were parasitized by a virulent or avirulent strain of the parasitoid wasp Leptopilina boulardi. The success of encapsulation depends on both the genetic status of the host strain and the genetic status of the parasitoid strain: the immune cellular reaction (capsule) is observed only with the resistant strain-avirulent strain combination. The total numbers of host haemocytes increased in all 4 combinations, suggesting that an immune reaction was triggered in all hosts. Resistant host larvae infected with the virulent or avirulent strains of parasitoid wasp had slightly more haemocytes per mm 3 than did susceptible host larvae at the beginning of the reaction (less than 15 h post-parasitization). This difference disappeared later. Only the virulent parasitoid strain caused the production of a high percentage of altered lamellocytes (from a discoid shape to a bipolar shape), half the total number of lamellocytes are altered. This suggests that the alteration of lamellocyte shape alone is not sufficient to explain the lack of capsule formation seen in resistant hosts parasitized by the virulent strain. Lastly, there were very few altered lamellocytes in resistant or susceptible hosts parasitized by the avirulent parasitoid strain, two combinations in which no capsule was formed. As is now established for Drosophila-parasitoid interactions, virus-like particles contained in the long gland of the female wasp affect the morphology of the lamellocytes. The results presented here are further proof of the action (direct or indirect) of virus like particles of the virulent strain on lamellocytes

    The Emerging Human Pathogen Photorhabdus asymbiotica Is a Facultative Intracellular Bacterium and Induces Apoptosis of Macrophage-Like Cellsâ–ż

    No full text
    Photorhabdus species are gram-negative entomopathogenic bacteria of the family Enterobacteriaceae. Among the different members of the genus, one species, Photorhabdus asymbiotica, is a pathogen of both insects and humans. The pathogenicity mechanisms of this bacterium are unknown. Here we show that P. asymbiotica is a facultative intracellular pathogen that is able to replicate inside human macrophage-like cells. Furthermore, P. asymbiotica was shown for the first time in an intracellular location after insect infection. We also demonstrated that among Australian and American clinical isolates, only the Australian strains were able to invade nonphagocytic human cells. In cell culture infection experiments, Australian clinical isolates as well as cell-free bacterial culture supernatant induced strong apoptosis of a macrophage cell line at 6 h postinfection. American isolates also induced cellular death, but much later than that induced by Australian ones. Mammalian cultured cells analyzed for key features of apoptosis displayed apoptotic nuclear morphology, activation of the initiator caspases 8 and 9 and the executioner caspases 3 and 7, and poly(ADP-ribose) polymerase proteolysis, suggesting activation of both the intrinsic and extrinsic apoptotic pathways
    corecore