85 research outputs found

    Скрытая масса и взрывная эволюция галактик

    Get PDF
    Быстрая эволюция числа массивных галактик при красном смещении z =6, обнаруженная в последние годы при анализе сверхглубокого поля Хаббла и Субару, может быть объяснена взрывным характером процесса слияния галактик.Швидка еволюція числа масивних галактик при червоному зміщенні z =6, яка була виявлена в останні роки з аналізу надглибокого поля Хаббла і Субару, може бути пояснена вибуховим характером процесу злиття галактик.The fast evolution of number of massive galaxies at the redshift z=6, which recent was found in analyses of the ultra deep Habble field and the same of Subaru, may be explained by the explosive character of galaxy mergings

    Cost-effectiveness analyses comparing cemented, cementless, hybrid and reverse hybrid fixation in total hip arthroplasty: a systematic overview and critical appraisal of the current evidence

    Get PDF
    Background: This study aims to present an overview and critical appraisal of all previous studies comparing costs and outcomes of the different modes of fixation in total hip arthroplasty (THA). A secondary aim is to provide conclusions regarding the most cost-effective mode of implant fixation per gender and age-specific population in THA, based on high quality studies.Methods: A systematic search was conducted to identify cost-effectiveness analyses (CEAs) comparing different modes of implant fixation in THA. Analysis of results was done with solely CEAs that had a high methodological quality.Results: A total of 12 relevant studies were identified and presented, of which 5 were considered to have the methodological rigor for inclusion in the analysis of results. These studies found that either cemented or hybrid fixation was the most cost-effective implant fixation mode for most age- and gender-specific subgroups.Conclusion: Currently available well performed CEAs generally support the use of cemented and hybrid fixation for all age-groups relevant for THA and both genders. However, these findings were mainly based on a single database and depended on assumptions made in the studies' methodology. Issues discussed in this paper have to be considered and future work is needed

    Rh-catalyzed linear hydroformylation of styrene

    Get PDF
    Usually the Rh-catalyzed hydroformylation of styrene predominantly yields the branched, chiral aldehyde. An inversion of regioselectivity can be achieved using strong π-acceptor ligands. Binaphthol-based diphosphite and bis (dipyrrolyl-phosphorodiamidite) ligands were applied in the Rh-catalyzed hydroformylation of styrene. High selectivities up to 83% of 3-phenylpropanal were obtained with 1,1-bi-2-naphthol-based bis(dipyrrolyl-phosphorodiamidite) with virtually no hydrogenation to ethyl benzene. The coordination chemistry of those ligands towards Rh(I) was investigated spectroscopically and structurally

    Sperm DNA damage causes genomic instability in early embryonic development

    Get PDF
    Genomic instability is common in human embryos, but the underlying causes are largely unknown. Here, we examined the consequences of sperm DNA damage on the embryonic genome by single-cell whole-genome sequencing of individual blastomeres from bovine embryos produced with sperm damaged by γ-radiation. Sperm DNA damage primarily leads to fragmentation of the paternal chromosomes followed by random distribution of the chromosomal fragments over the two sister cells in the first cell division. An unexpected secondary effect of sperm DNA damage is the induction of direct unequal cleavages, which include the poorly understood heterogoneic cell divisions. As a result, chaotic mosaicism is common in embryos derived from fertilizations with damaged sperm. The mosaic aneuploidies, uniparental disomies, and de novo structural variation induced by sperm DNA damage may compromise fertility and lead to rare congenital disorders when embryos escape developmental arrest

    Direct comparison of non-osteoarthritic and osteoarthritic synovial fluid-induced intracellular chondrocyte signaling and phenotype changes.

    Get PDF
    ObjectiveSince the joint microenvironment and tissue homeostasis are highly dependent on synovial fluid, we aimed to compare the essential chondrocyte signaling signatures of non-osteoarthritic vs end-stage osteoarthritic knee synovial fluid. Moreover, we determined the phenotypic consequence of the distinct signaling patterns on articular chondrocytes.MethodsProtein profiling of synovial fluid was performed using antibody arrays. Chondrocyte signaling and phenotypic changes induced by non-osteoarthritic and osteoarthritic synovial fluid were analyzed using a phospho-kinase array, luciferase-based transcription factor activity assays, and RT-qPCR. The origin of osteoarthritic synovial fluid signaling was evaluated by comparing the signaling responses of conditioned media from cartilage, synovium, infrapatellar fat pad and meniscus. Osteoarthritic synovial fluid induced pathway-phenotype relationships were evaluated using pharmacological inhibitors.ResultsCompared to non-osteoarthritic synovial fluid, osteoarthritic synovial fluid was enriched in cytokines, chemokines and growth factors that provoked differential MAPK, AKT, NFκB and cell cycle signaling in chondrocytes. Functional pathway analysis confirmed increased activity of these signaling events upon osteoarthritic synovial fluid stimulation. Tissue secretomes of osteoarthritic cartilage, synovium, infrapatellar fat pad and meniscus activated several inflammatory signaling routes. Furthermore, the distinct pathway signatures of osteoarthritic synovial fluid led to accelerated chondrocyte dedifferentiation via MAPK/ERK signaling, increased chondrocyte fibrosis through MAPK/JNK and PI3K/AKT activation, an elevated inflammatory response mediated by cPKC/NFκB, production of extracellular matrix-degrading enzymes by MAPK/p38 and PI3K/AKT routes, and enabling of chondrocyte proliferation.ConclusionThis study provides the first mechanistic comparison between non-osteoarthritic and osteoarthritic synovial fluid, highlighting MAPKs, cPKC/NFκB and PI3K/AKT as crucial OA-associated intracellular signaling routes

    Deficiency of nucleotide excision repair is associated with mutational signature observed in cancer

    Get PDF
    Nucleotide excision repair (NER) is one of the main DNA repair pathways that protect cells against genomic damage. Disruption of this pathway can contribute to the development of cancer and accelerate aging. Mutational characteristics of NER-deficiency may reveal important diagnostic opportunities, as tumors deficient in NER are more sensitive to certain treatments. Here, we analyzed the genome-wide somatic mutational profiles of adult stem cells (ASCs) from NER-deficient Ercc1−/Δ mice. Our results indicate that NER-deficiency increases the base substitution load twofold in liver but not in small intestinal ASCs, which coincides with the tissue-specific aging pathology observed in these mice. Moreover, NER-deficient ASCs of both tissues show an increased contribution of Signature 8 mutations, which is a mutational pattern with unknown etiology that is recurrently observed in various cancer types. The scattered genomic distribution of the base substitutions indicates that deficiency of global-genome NER (GG-NER) underlies the observed mutational consequences. In line with this, we observe increased Signature 8 mutations in a GG-NER-deficient human organoid culture, in which XPC was deleted using CRISPR-Cas9 gene-editing. Furthermore, genomes of NER-deficient breast tumors show an increased contribution of Signature 8 mutations compared with NER-proficient tumors. Elevated levels of Signature 8 mutations could therefore contribute to a predictor of NER-deficiency based on a patient's mutational profile

    Cost-effectiveness of a vocational enablement protocol for employees with hearing impairment; design of a randomized controlled trial

    Get PDF
    Background: Hearing impairment at the workplace, and the resulting psychosocial problems are a major health problem with substantial costs for employees, companies, and society. Therefore, it is important to develop interventions to support hearing impaired employees. The objective of this article is to describe the design of a randomized controlled trial evaluating the (cost-) effectiveness of a Vocational Enablement Protocol (VEP) compared with usual care. Methods/Design. Participants will be selected with the 'Hearing and Distress Screener'. The study population will consist of 160 hearing impaired employees. The VEP intervention group will be compared with usual care. The VEP integrated care programme consists of a multidisciplinary assessment of auditory function, work demands, and personal characteristics. The goal of the intervention is to facilitate participation in work. The primary outcome measure of the study is 'need for recovery after work'. Secondary outcome measures are coping with hearing impairment, distress, self-efficacy, psychosocial workload, job control, general health status, sick leave, work productivity, and health care use. Outcome measures will be assessed by questionnaires at baseline, and 3, 6, 9, and 12 months after baseline. The economic evaluation will be performed from both a societal and a company perspective. A process evaluation will also be performed. Discussion. Interventions addressing occupational difficulties of hearing impaired employees are rare but highly needed. If the VEP integrated care programme proves to be (cost-) effective, the intervention can have an impact on the well-being of hearing impaired employees, and thereby, on the costs for the company as well for the society. Trial registration. Netherlands Trial Register (NTR): NTR2782. © 2012 Gussenhoven et al; BioMed Central Ltd

    Prioritization of genes driving congenital phenotypes of patients with de novo genomic structural variants

    Get PDF
    Background:Genomic structural variants (SVs) can affect many genes and regulatory elements. Therefore, the molecular mechanisms driving the phenotypes of patients carrying de novo SVs are frequently unknown. Methods:We applied a combination of systematic experimental and bioinformatic methods to improve the molecular diagnosis of 39 patients with multiple congenital abnormalities and/or intellectual disability harboring apparent de novo SVs, most with an inconclusive diagnosis after regular genetic testing. Results: In 7 of these cases (18%), whole-genome sequencing analysis revealed disease-relevant complexities of the SVs missed in routine microarray-based analyses. We developed a computational tool to predict the effects on genes directly affected by SVs and on genes indirectly affected likely due to the changes in chromatin organization and impact on regulatory mechanisms. By combining these functional predictions with extensive phenotype information, candidate driver genes were identified in 16/39 (41%) patients. In 8 cases, evidence was found for the involvement of multiple candidate drivers contributing to different parts of the phenotypes. Subsequently, we applied this computational method to two cohorts containing a total of 379 patients with previously detected and classified de novo SVs and identified candidate driver genes in 189 cases (50%), including 40 cases whose SVs were previously not classified as pathogenic. Pathogenic position effects were predicted in 28% of all studied cases with balanced SVs and in 11% of the cases with copy number variants. Conclusions:These results demonstrate an integrated computational and experimental approach to predict driver genes based on analyses of WGS data with phenotype association and chromatin organization datasets. These analyses nominate new pathogenic loci and have strong potential to improve the molecular diagnosis of patients with de novo SVs
    corecore