СКРЫТАЯ МАССА И ВЗРЫВНАЯ ЭВОЛЮЦИЯ ГАЛАКТИК

А.В. Кац¹, В.М. Конторович^{2,3}

¹Институт радиофизики и электроники НАН Украины, Харьков;
²Радиоастрономический институт НАН Украины, Харьков;
³Харьковский национальный университет им. В.Н. Каразина, Харьков
E-mail: ak 04@rambler.ru, vkont@ri.kharkov.ua

Быстрая эволюция числа массивных галактик при красном смещении z =6, обнаруженная в последние годы при анализе сверхглубокого поля Хаббла и Субару, может быть объяснена взрывным характером процесса слияния галактик.

1. ВВЕДЕНИЕ

Сообщение [1,2] об обнаружении в сверхглубоких полях Хаббла и Субару "внезапного" появления массивных галактик при красном смещении z=6 (см. также [3]), а также сообщение о наблюдении заключительной стадии процесса вторичной ионизации в этот же период [4] (см. литературу и обсуждение в обзоре [5]) может свидетельствовать, по нашему мнению, так же как и эпоха возникновения квазаров [6], о взрывном характере эволюции галактик в результате слияний [7, 8].

Долгое время считалось, что после своего образования в результате развития гравитационной неустойчивости (из газового протогалактического облака), галактики эволюционируют сугубо индивидуально. Наблюдательные данные последних трех десятилетий, в особенности данные космического телескопа Хаббла и крупнейших наземных телескопов, дают убедительные доказательства определяющей роли слияний в космогонии галактик. Обстоятельный обзор Кенникута, Швейцера и Барнса [9], посвященный взаимодействию и слиянию галактик и вызванному им индуцированному звездообразованию (около 1000 ссылок и более 200 иллюстраций!) позволяет опустить здесь подробное описание соответствующей библиографии и наблюдательных аргументов.

Процессы слияний происходят в темной холодной материи (CDM), джинсова длина в которой мала, несмотря на то, что эволюция происходит в горячей Вселенной. Первоначально возникшие флуктуации малых масс, порядка массы шаровых скоплений в эпоху рекомбинации водорода, сливаясь (и скучиваясь) образуют за космологическое время массивные объекты — галактики (и их скопления). При этом светящееся барионное вещество представляет собой малую примесь к темной материи в галактиках.

В работах римской и харьковской групп в 90-е годы [7,8,10-14] показана возможность кинетического «фазового перехода» [15-17] в системе галактик, проявляющегося в самоускоряющемся процессе образования массивных галактик за счет слияний галактик малых масс — «эпоха» возникновения галактик. То есть процесс слияний при гравитационном взаимодействии носит «взрывной характер». Взрывное поведение слияний существенно связано с зависимостью вероятности слияния от масс галактик. А именно, к взрывной эволюции и фазовому

переходу приводит рост вероятности более быстрый, чем первая степень массы [8, 10]. В современных космологических теориях это обстоятельство либо игнорируется, либо учитывается недостаточно детально. "Внезапное" появление галактик при z=6 можно пытаться рассматривать как наблюдательное свидетельство "взрывной" эволюции, чему и посвящена данная работа.

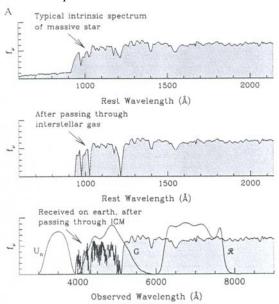


Рис.1. Иллюстрация метода многоцветной фотометрии, используемого при поиске далеких галактик. Показано изменение наблюдаемого спектра за счет красного смешения [18]

Корреляция между активностью галактик и их взаимодействием и слияниями также является сейчас уже хорошо установленным наблюдательным фактом [6,19,11]. Малая концентрация квазаров и радиогалактик позволяет возникать им даже за счет очень редких соударений или слияний. Активные галактики могут играть роль удобного маркера при исследовании вопроса о слияниях. Примером может служить обрыв в распределении квазаров при красных смещениях $z_{cr} \approx 2-3$, который может означать окончание момента "сборки" массивных галактик из менее массивных блоков, когда возмущения, соответствующие "взрывной" эволюции, свойственной процессу слияния галактик, приводят к активности в их центрах, связанной с аккрецией вещества на черную дыру.

2. ЭПОХА ВОЗНИКНОВЕНИЯ ГАЛАКТИК И ВТОРИЧНОЙ ИОНИЗАЦИИ

2.1. НАБЛЮДЕНИЯ ДАЛЕКИХ ГАЛАКТИК

При таких наблюдениях используется метод многоцветной фотометрии в полях глубоких обзоров космического телескопа Хаббла и крупнейших наземных телескопов [1,2]. Принцип легко понять из рисунка, заимствованного из обзора [18] одного из авторов этого метода (Рис.1). Благодаря большому красному смещению, изображения далеких галактик исчезают в ультрафиолетовых и оптических фильтрах, и галактика видна только в красной или даже в ИК-области спектра (Рис. 2).

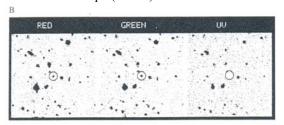


Рис.2. Сравнение изображения далекой галактики в разных фильтрах при использовании метода многоцветной фотометрии [18]

2.2. ЭВОЛЮЦИЯ КОНЦЕНТРАЦИИ НЕЙТРАЛЬНОГО ВОДОРОДА

Другим эффектом, свидетельствующим о появлении звезд и галактик на больших красных смещениях, служит наблюдение вызываемой ими вторичной ионизации водорода. О концентрации нейтрального водорода можно судить по линиям поглощения в спектрах далеких квазаров (Рис.3).

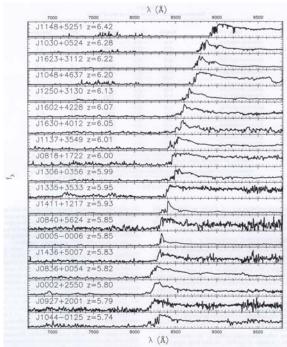


Рис.3. Спектры далеких квазаров [4]

Обнаруженная в [4] резкая зависимость концентрации водорода от красного смещения в окрестности z=6 (Рис.4) также свидетельствует в пользу взрывной эволюции.

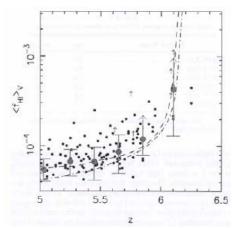


Рис.4. Быстрое изменение концентрации нейтрального водорода вблизи z = 6 [4]

3. УРАВНЕНИЕ СМОЛУХОВСКОГО И СЛИЯНИЯ ГАЛАКТИК

3.1. ВЕРОЯТНОСТЬ СЛИЯНИЯ ГАЛАКТИК

Поскольку за неупругость столкновения, приводящую к слиянию, ответственны быстро убывающие приливные силы в бесстолкновительной звездной подсистеме галактик, для слияния необходимо их тесное сближение (вплоть до перекрытия). При большой относительной скорости V галактики пройдут друг сквозь друга даже при полном пересечении. Сечение слияний используем в виде $\sigma=\pi\left(R_{\!_1}+R_{\!_2}
ight)^2\left(1+\gamma
ight)\!\!\!/\!\!\!/\!\!\!/\, \phi\left(\gamma
ight)$, где $\gamma\equiv V_{\!_g}^2\left/V^2\right.$ — параметр фокусировки; V – относительная скорость галактик; $V_{\rm g}$ – скорость убегания («вторая космическая скорость»); а функция $\varphi(\gamma) \to 1$ при $\gamma \to \infty$; $\varphi(\gamma) \to 0$ при $\gamma \to 0$ и зависит от модели слияния. Простейший вариант критерия слияния: минимальное расстояние между сталкивающимися галактиками - меньше суммы их радиусов $(R_1 + R_2)$, а относительная скорость на бесконечности меньше V_{σ} . Это приводит к следующему выражению (выписываем только зависимости от масс) для коэффициента коагуляции $U \equiv \overline{\sigma V}$, где черта означает усреднение по скоростям галактик:

$$U = \begin{cases} c_{1+\beta} \left(M_{_{1}} + M_{_{2}} \right) \left(M_{_{1}}^{\beta} + M_{_{2}}^{\beta} \right), & \text{(большие массы)} \\ c_{2} \left(M_{_{1}} + M_{_{2}} \right)^{2}. & \text{(малые массы)} \end{cases}$$
(1)

Здесь радиус галактики R связан с её массой M соотношением $R = CM^{\beta}$ ($\beta = 1/3$ соответствует постоянной плотности, $\beta = 1/2$ — наблюдаемым законам Фабера-Джексона и Талли-Фишера). Коэффициенты в (1):

$$c_{1+\beta}=2\sqrt{3\pi}CG/\overline{V}$$
 , $c_2=9\sqrt{3\pi}G^2/2\overline{V}^3$, (1,a) где G — гравитационная постоянная. Для функции $U(M_1,M_2)$ удобно ввести ее степень однородности u и показатели $u_{1,2}$, описывающие ее асимптотики при сильно отличающихся массах: $U \propto M_1^{u_1}M_2^{u_2}$, $M_1 \square M_2$, $u_1+u_2=u$. Очевидно, что в случае малых масс $(M \square M_b)$ $u_1=0$, $u_2=u=2$, а для боль-

ших масс ($M \square M_b$) $u_1 = 0$, $u_2 = u = 1 + \beta$, где $M_b = (C\overline{V}^2/G)^{3/2}$ разделяет области больших и малых масс. Заметим, что именно параметры $u_{1,2}$ (т. е. асимптотики U) определяют асимптотики источника в уравнении для функции светимости квазаров (см. ссылки в [19]). Поскольку скрытая масса (темное вещество) также бесстолкновительна, то в простейших схемах, по-видимому, можно не отделять темную материю от светящейся, если считать гало индивидуализированными для галактик.

3.2. ФУНКЦИЯ МАСС ГАЛАКТИК

Если массивные галактики преимущественно образуются в результате слияния менее массивных, то этот процесс отражает их распределение по массам [20,21] — функция масс (ФМ). Вычислить такую функцию можно, например, если ограничиться парными слияниями, решив описывающее её уравнение Смолуховского (УС):

$$\frac{\partial f(M,t)}{\partial t} = \int dM_1 dM_2 \left[U_{12} \delta_{M} f_1 f_2 - cycle - bicycle \right]. (2)$$

Здесь $f_1 \equiv f(M_1, t)$, $\delta_M \equiv \delta(M - M_1 - M_2)$ – дираковская δ -функция, выражающая закон сохранения массы при слияниях; U_{12} – коэффициент коагуляции (1). В случае обобщенного УС (см. ниже) мы будем считать выполняющимся также закон сохранения углового момента. Законы эти для столкновения галактик отнюдь не очевидны, но с удовлетворительной точностью подтверждаются численными экспериментами [19]. Для темного вещества вопрос остается открытым. Однако и для него чисто гравитационные взаимодействия и бесстолкновительность должны иметь место. Выход за эти рамки, как и за рамки УС, требует использования значительно более изошренного математического аппарата, который применительно к интересующему нас кругу задач еще только развивается. В то же время, как известно, кинетические уравнения хорошо описывают ситуацию и шире формальных рамок применимости. Отметим, что между классическим подходом Пресса и Шехтера [20], использующим ренормгрупповую перенормировку масштаба, и кинетическим подходом также имеется связь. С точки зрения кинетики в [20] описывается результат многих слияний ближайших соседей с вероятностью, не зависящей от масс. Поэтому взрывной эволюции в этом сценарии не возникает.

3.3. "ВЗРЫВНАЯ" ЭВОЛЮЦИЯ ГАЛАКТИК

В случае галактик весьма существенной оказывается зависимость U от масс, которая приводит, в частности, к взрывной эволюции ФМ. Необычное поведение решения УС (в наших терминах при u>1) было открыто Стокмайером применительно к полимеризации, а затем последовательно переоткрывалось в других областях физики [15-17]. В этом случае в системе происходит нечто близкое к фазовому переходу: за конечное время $t\approx t_{cr}$ устанавливается квазистепенное распределение $f\propto M^{-\alpha}$, вплоть до формально бесконечных масс ("взрывная"

эволюция). Достаточно подробное исследование взрывной эволюции в связи с образованием центральных массивных сD-галактик в группах, эпохой рождения квазаров, эффектом Бутчера-Эмлера «покраснения» галактик на определенных красных смещениях и т.п. было проведено в работах римской и харьковской групп [7,8,10-14]. Если число галактик (с массами порядка $M_{\rm 0}$) в единице объема равно $N_{\rm 0}$, то характерное время взрывной эволюции (если оно много меньше хаббловского) можно оценить как [8]

$$t_{cr} = \xi_u / \left(c_u N_0 M_0^u \right), \tag{3}$$

где соответственно ξ_u = 0.002; 0.26; 0,1 для u= 2; 4/3; 3/2; c_u см. в (1,a). Появление в процессе слияний относительно крутой промежуточной асимптотики $(\alpha \approx 2)$ легко может быть понято из следующих аргументов. Оба полученные численно значения для индексов ($\alpha \Box 1.9$ для u = 4/3 и $\alpha \Box 2.1$ для u = 3/2) находятся между (u + 2)/2 и (u + 3)/2. ФМ с $\alpha = (u+3)/2$ cootbetctbyet постоянному потоку массы вдоль спектра масс до «бесконечности», то есть до сD-галактики в нашем случае. (Решения с постоянным потоком сохраняющейся величины аналогичны колмогоровским спектрам в теории слабой турбулентности). Однако, благодаря нелокальности распределений с u > 1 (расходимость интеграла в УС на степенном распределении), такое решение не реализуется точно в обоих наших случаях. Нелокальность приводит к существенной роли взаимодействий между галактиками малых и больших масс. При этом число массивных галактик приблизительно сохраняется и постоянный поток их числа по спектру соответствует индексу $\alpha = (u + 2)/2$. В итоге индекс спектра ФМ (как можно видеть из численного решения УС [12]) расположен между этими значениями: $1.67 < \alpha \approx 1.9 <$ 2.17 (u = 4/3), 1.75 < $\alpha \approx 2.1 < 2.25$ (u = 3/2). Мы ограничились здесь обсуждением случая больших масс. При малых массах u = 2 и нелокальность еще существенней. В этом случае естественным является переход от интегрального УС к соответствующему дифференциальному уравнению, которое допускает более детальное аналитическое исследование, что и было предпринято в [8]. Вклад темной материи делает оценку (3) достаточно приемлемой.

4. ОБОБЩЕННОЕ КИНЕТИЧЕСКОЕ УРАВНЕНИЕ СМОЛУХОВСКОГО

Обобщенное уравнение Смолуховского было введено авторами для описания совместного распределения галактик f(M, S; t) по массам и моментам S количества движения [22]. Оно имеет вид:

$$\frac{\partial f(M, \mathbf{S}, t)}{\partial t} = \int d\tau \left[U_{12} \delta_{MS} f_1 f_2 - cycle - bicycle \right],$$

$$d\tau = dM_1 d\mathbf{S}_1 dM_2 d\mathbf{S}_2,$$

$$\delta_{MS} = \delta \left(M - M_1 - M_2 \right) \delta \left(\mathbf{S} - \mathbf{S}_1 - \mathbf{S}_2 \right).$$
(4)

Интерес к распределению галактик по моментам определяется формированием различных морфоло-

гических типов при слияниях, но этим не ограничивается: слияния приводят к возникновению активности галактических ядер (АЯГ). Один из способов описания этого грандиозного феномена, включающего ультраяркие ИК-галактики, радиогалактики и квазары, состоит в учете компенсации момента при слиянии (см. [22, 8]). Распределение по массам и моментам f(M, S; t), устанавливающееся в результате слияний галактик, можно найти, решив обобщенное УС [22]. Аналитически это возможно сделать лишь при весьма упрощающих допущениях. В частности, в так называемой анизотропной модели распределение факторизовано и имеет вид произведения ФМ на острую функцию от моментов. Отказавшись от упрощений, приходится прибегать к численным методам, в частности, к моделированию с помощью метода Монте-Карло [23]. Оказывается, что в системе сливающихся галактик происходит аналог кинетического фазового перехода Стокмайера.

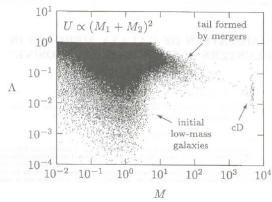


Рис.5. Формирование степенного «хвоста» ФМ и массивных сD-галактик за счет слияний. По оси ординат отложен безразмерный момент [23]

Система разделяется на две фазы: гигантскую галактику, в которой заключена макроскопическая часть массы, и много мелких галактик. Возникающую гигантскую галактику можно отождествить с реальными сD-галактиками в центрах групп и скоплений. Среди мелких большинство составляют галактики, ни разу не испытавшие слияния. За счет слияний образуется степенное распределение. Его ФМ, полученная в результате численного моделирования (Рис.5), находится в хорошем согласии с функцией, полученной прямым решением УС [12, 22].

Вследствие значительного вклада слияний между относительно небольшим числом появляющихся массивных галактик и мало массивными галактиками, время t_{cr} , соответствующее "фазовому переходу", существенно меньше среднего времени парных столкновений. Этот процесс можно также сопоставить наблюдаемому укручению ФМ галактик на ее легком конце [14]. При $\alpha > 2$ основная барионная масса Вселенной может быть сосредоточена в невидимых маломассивных галактиках.

4.1. АКТИВНОСТЬ И СЛИЯНИЯ

Согласно практически общепринятым представлениям активные ядра галактик (АЯГ) представляют собой весьма сложно устроенную аккрецирующую систему вокруг сверхмассивной черной дыры, нахо-

дящейся в центре хозяйской галактики. (Упомянем аккреционный диск, затеняющий тор или толстый диск, по оси которого направлен радиовыброс в случае радиогромких объектов, систему быстролетящих облаков, формирующих широкие, а на больших расстояниях – уже за тором – узкие оптические эмиссионные линии и т.п.). Хотя в силу чрезвычайной эффективности энерговыделения при аккреции для питания большинства АЯГ достаточно "внутренних ресурсов", они, по не вполне понятным причинам, не обеспечивают необходимую поставку топлива. Данные последних трех декад, а в особенности данные космического телескопа Хаббла, убедительно свидетельствуют в пользу того, что взаимодействие галактик и, в первую очередь, их слияния (это непосредственно подтверждается наблюдением хозяйских галактик ближайших квазаров [24]) ответственны за феномен активности, поставляя необходимое для аккреции вещество. Процесс слияний может носить взрывной характер (см. выше) и "эпоха квазаров" может соответствовать заключительному этапу сборки массивных галактик из строительных блоков (мало массивных и карликовых галактик), когда возмущенные движения достигают центра.

Подобная "сборка" галактик позволяет объяснить как быстрое убывание числа квазаров от прошлого к настоящему, так и известный обрыв в их распределении на больших красных смещениях, сделать выводы о виде и эволюции их функции светимости [11-13, 25] и т.п. Радиогромкие квазары в модели слияний естественно связываются с вращением черной дыры, которое инициируется либо недавним "сильным" слиянием с галактикой сравнимой массы, либо относительно небольшим количеством" слабых" слияний массивной галактики с галактиками малых масс.

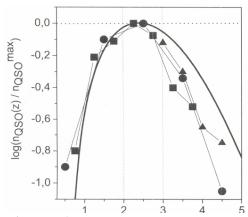


Рис.6. Распределение ярких квазаров по красным смещениям [25]

Местонахождение удаленных квазаров в скоплениях, а более близких - в группах, способствует слияниям. Наиболее экзотический вариант — возможность слияния галактики (или облака межгалактической среды) с "голой" массивной черной дырой [26].

В модели слияний характерная масса галактик со временем растет, а светимость квазаров после эпохи их образования, как известно из наблюдений, падает.

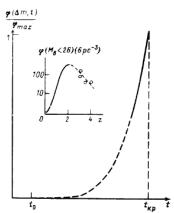


Рис.7. Изменение числа активных галактик при взрывной эволюции [8]. Аналогично ведет себя и распределение галактик по массам [27]. На врезке – ранний вариант распределения квазаров по z

Таким образом, простая космологическая эволюция ФМ не может быть причиной этого падения. Одно из возможных объяснений уменьшения светимости квазаров [28] заключается в космологической эволюции доли вещества η , реально попадающего в центр при слияниях [13]. Уменьшение η на космологических временах можно связать с уменьшением содержания газа в галактиках. Действительно, при слиянии в центр попадает, в основном, газ, а за счет интенсивного звездообразования при каждом слиянии его доля, естественно, должна уменьшаться, как это и наблюдается. Влияет также эволюция контраста плотности галактик. При этом для не эволюционирующей ФМ доля вещества, попавшего в центр, изменяется с $\eta \sim 0.12...0.3$ при $z \sim 2$ до $\eta \sim 0.025...0.043$ при $z \sim 0.5$, а средний контраст плотности в местах образования квазаров – от $\sim 1.4...2.4$ при $z \sim 2$ до $\sim 4.5...7.2$ при $z \sim 0.5$. (В случае эволюции ФМ и учета эддингтоновского ограничения светимости параметр η и контраст плотности могут быть еще выше). Таким образом, рассматриваемая модель может описать наблюдаемую эволюцию квазаров.

Галактики в обсуждаемой схеме являются носителями массы и момента. Возможна параметризация хаббловских морфологических типов различными значениями эффективного момента $S_{eff}(M)$ [22, 29]). Дополнительное обсуждение и ссылки на работы по взрывной эволюциии галактик можно найти также в обзорах [30, 31].

ЗАКЛЮЧЕНИЕ

Если предположение об обнаружении взрывной эволюции галактик за счет слияний подтвердится, это даст не только новые возможности исследования их эволюции, но и новые данные о скрытой массе и темной материи в галактиках, существенно влияющей на эти процессы.

ЛИТЕРАТУРА

- R.J. Bouwence & G.D. Illingworth. Rapid Evolution in the Most Luminous Galaxies During the First 900 Million Years // Nature. 2006, v.443, p.189-193.
- 2. M. Iye, et al. A galaxy at a redshift z=6.96 // *Nature*. 2006, v.443, p.184-188.
- 3. J.S. Dunlop, et al. A systematic search for very mas-

- sive galaxies at z>4 // MNRAS. 2007, v.376, p.1054-1064
- 4. X. Fan, et al. Constraining the evolution of the ionizing background and the epoch of re-ionization with z~6 quasars // Astron. J. 2006, v.132, p.117-136.
- R. Ellis and J. Silk. New frontiers in cosmology and galaxy formation: challenges for the future // Structure formation in Astrophysics / Ed.G. Chabrier. Cambridge: CUP, 2008.
- 6. M. Schmidt, D.P. Schneider & J.E. Gunn. Evolution of the luminosity function from quasars detected by their Ly α emission // *Astron. J.* 1995, v.110, p.68-77.
- 7. A. Cavaliere, B. Colofrancesco, N. Menci. The merging runaway // *Astrophys. J.* 1991, v.376, №2, p.L37-41.
- 8. В.М. Конторович, А.В. Кац, Д.С. Кривицкий. "Взрывная" эволюция галактик в модели слияний и эпоха возникновения квазаров // Письма в ЖЭТФ. 1992, т.55, №9, с.3-9.
- 9. R.C. Kennicutt, P. Schweizer & J.E. Barnes. *Galaxies: Interactions and Induced Star Formation*. Saas-Fee Advance Course, v.26, Springer, 1998, p.404.
- A. Cavaliere, S. Colofrancesco & N. Menci. Merging in cosmic structures // Astrophys. J. 1992, v.392, №1, p.41-44.
- 11. V.M. Kontorovich. The connection between the interaction of galaxies and their activity // Astron. and Astrophys. Trans. 1994, v.5, №3, p.259-278.
- 12. V.M. Kontorovich, D.S. Krivitsky, A.V. Kats. "Explosive" evolution of galaxies (an analogue of collapse) and appearance of quasars in the merger model // *Physica D.* 1995, v.87, p.290-294.
- 13. В.М. Конторович, Д.С. Кривицкий. Функция светимости квазаров в модели слияний // *Письма* в Астрон. журн. 1995, т.21, №9, с.643-649.
- 14. V.M. Kontorovich. The weak turbulence methods in the problem of galaxy mass distribution function // Problems of Atomic Sci. & Techn. Series «Plasma Physics». 2000, №6, p.84-87.
- 15. В.М. Волощук. *Кинетическая теория коагуляции*. Ленинград: «Гидрометеоиздат», 1984, с.284.
- 16. W.H. Stockmayer. Theory of molecular size distribution and gel formation in branched-chain polymers // J. Chem. Phys. 1943, v.11, №2, p.45-55.
- 17. Б.А. Трубников. Решение уравнений коагуляции при билинейном коэффициенте слипания частиц // ДАН СССР. 1971, т.196, с.1316-1319.
- 18. C. Steidel. Observing the epoch of galaxy formation // Proceedings of the NAS of the USA. 1999, v.96, p.4232-4235.
- 19. В.М. Конторович. Влияние слияний на динамические свойства галактик // *КФНТ*. Приложение №2, 1999, с.47-56.
- 20. W.H. Press & P. Shechter. Formation of galaxies and clasters of galaxies by self-similar gravitational condensation // Astrophys. J. 1974, v.187, №3, p.425-435.
- 21. B. Binggeli, A. Sandage, G.A. Tammann. The luminosity function of galaxies // Ann. Rev. Astron. Ap. 1988, v.26, p.509-560.

- 22. А.В. Кац, В.М. Конторович. Распределение галактик по массам и моментам, формирующееся в результате слияний, и проблема активности ядер // ЖЭТФ. 1990, т.97, №1, с.3-19.
- 23. V.M. Kontorovich, D.S. Krivitsky. Merger of galaxies in clusters: Monte Carlo simulation of mass and angular momentum distribution // Astron. & Astrophys. v.327, p.921-929.
- 24. J.N. Bacall, S. Kirhakos, D.P. Schneider. PKS 2349-014: a luminous quasar with thin wisps // *Astrophys.J.* 1995, v.447, №1, p.L1-4.
- P.A. Shaver. High Redshift Quasars. // 17-th Texas Symposium on Relativistic Astrophysics and Cosmology / Eds: H. Boringer, G.E. Morfill and J.E. Trumper. NY Acad. Sci. N.Y. 1995, p.87-109.
- 26. M.J. Valtonen, P. Heinamaki. Double Radio Sources: Two Approaches // Astrophys. J. 2000, v.530, №1, p.107-123.

- 27. A.V. Kats, V.M. Kontorovich, D.S. Krivitsky. Galaxy mass spectrum explosive evolution caused by coalescence // Astron. and Astrophys. Trans. 1992, v.3, p.53-56.
- 28. A. Cavaliere, V. Vittorini. The fall of the quasar population // *Astrophys. J.* 2000, v.543, №2, p.599-610; *astro-ph/9802320*.
- 29. V.M. Kontorovich, M.F. Khodyachikh, K.L. Golobokov, V.N. Balashov. The effective rotational momentum as a characteristic of the Hubble's type of galaxies // Astr. & Ap. Tr. 1995, v.8, p.83-88.
- 30. V.M. Kontorovich. Zakharov's transformation in the problem of galaxy mass distribution function // *Physica D*. 2001, v.152-153, p.676-681.
- 31. В.М. Конторович. Линейные и нелинейные волны. Ч.2. // *Радиофизика и радиоастрономия*. 2006, т.11, №1, с.5-30,

Статья поступила в редакцию 28.05.2010 г.

DARK MATTER AND EXPLOSIVE GALAXY EVOLUTION

A.V. Kats, V.M. Kontorovich

The fast evolution of number of massive galaxies at the redshift z=6, which recent was found in analyses of the ultra deep Habble field and the same of Subaru, may be explained by the explosive character of galaxy mergings.

СКРИТА МАСА ТА ВИБУХОВА ЕВОЛЮЦІЯ ГАЛАКТИК

А.В. Кац, В.М. Конторович

Швидка еволюція числа масивних галактик при червоному зміщенні z =6, яка була виявлена в останні роки з аналізу надглибокого поля Хаббла і Субару, може бути пояснена вибуховим характером процесу злиття галактик.