23 research outputs found

    First finds of Prunus domestica L. in Italy from the Phoenician and Punic periods (6th-2nd centuries BC)

    Get PDF
    Abstract During the archaeological excavations in the Phoenician and Punic settlement of Santa Giusta (Oristano, Sardinia, Italy), dating back to the 6th–2nd centuries bc, several Prunus fruitstones (endocarps) inside amphorae were recovered. The exceptional state of preservation of the waterlogged remains allowed morphometric measurements to be done by image analysis and statistical comparisons made with modern cultivated and wild Prunus samples collected in Sardinia. Digital images of modern and archaeological Prunus fruitstones were acquired with a flatbed scanner and analysed by applying image analysis techniques to measure 26 morphometric features. By applying stepwise linear discriminant analysis, a morphometric comparison was made between the archaeological fruitstones of Prunus and the modern ones collected in Sardinia. These analyses allowed identification of 53 archaeological fruitstones as P. spinosa and 11 as P. domestica. Moreover, the archaeological samples of P. spinosa showed morphometric similarities in 92.5% of the cases with the modern P. spinosa samples currently growing near the Phoenician and Punic site. Likewise, the archaeological fruitstones identified as P. domestica showed similarities with the modern variety of P. domestica called Sanguigna di Bosa which is currently cultivated near the village of Bosa. Currently, these findings represent the first evidence of P. domestica in Italy during the Phoenician and Punic periods. Keywords Archaeobotany · Image analysis · Morphometric features · Prunus · Sardini

    Population genetic analysis of brazilian peach breeding germplasm.

    Get PDF
    ABSTRACT Peach has great economic and social importance in Brazil. Diverse sources of germplasm were used to introduce desirable traits in the Brazilian peach breeding pool, composed mainly by local selections and accessions selected from populations developed by the national breeding programs, adapted to subtropical climate, with low chill requirement, as well as accessions introduced from several countries. In this research, we used SSR markers, selected by their high level of polymorphism, to access genetic diversity and population structure of a set composed by 204 peach selected genotypes, based on contrasting phenotypes for valuable traits in peach breeding. A total of 80 alleles were obtained, giving an average of eight alleles per locus. In general, the average value of observed heterozygosity (0.46) was lower than the expected heterozygosity (0.63). STRUCTURE analysis assigned 162 accessions splitted into two subpopulations based mainly on their flesh type: melting (96) and non-melting (66) flesh cultivars. The remaining accessions (42) could not be assigned under the 80% membership coefficient criteria. Genetic variability was greater in melting subpopulation compared to non-melting. Additionally, 55% of the alleles present in the breeding varieties were also present in the founder varieties, indicating that founding clones are well represented in current peach cultivars and advanced selections developed. Overall, this study gives a first insight of the peach genetic variability available and evidence for population differentiation (structure) in this peach panel to be exploited and provides the basis for genome-wide association studies

    Assessment of genetic diversity and relatedness among Tunisian almond germplasm using SSR markers

    Get PDF
    10 Pag., 3 Tabl., 2 Fig.Genetic diversity of 50 Tunisian almond (Prunus dulcis Mill.) genotypes and their relationships to European and American cultivars were studied. In total 82 genotypes were analyzed using ten genomic SSRs. A total of 159 alleles were scored and their sizes ranged from 116 to 227 bp. The number of alleles per locus varied from 12 to 23 with an average of 15.9 alleles per locus. Mean expected and observed heterozygosities were 0.86 and 0.68, respectively. The total value for the probability of identity was 4 × 10−13. All SSRs were polymorphic and they were able all together to distinguish unambiguously the 82 genotypes. The Dice similarity coefficient was calculated for all pair wise and was used to construct an UPGMA dendrogram. The results demonstrated that the genetic diversity within local almond cultivars was important, with clear geographic divergence between the northern and the southern Tunisian cultivars. The usefulness of SSR markers for almond fingerprinting, detection of synonyms and homonyms and evaluation of the genetic diversity in the Tunisian almond germplasm was also discussed. The results confirm the potential value of genetic diversity preservation for future breeding programs.This research was supported in part by the Tunisian Ministry of Higher Education, Scientific Research and Technology, the Spanish Agency for International Cooperation (A/5339/06 and A/8334/07), the Spanish MICINN (Ministry of Science and Innovation) grants AGL2008-00283/AGR, and the Regional Government of Aragon funds (A44).Peer reviewe

    Genetic analysis of iron chlorosis tolerance in Prunus rootstocks

    Get PDF
    39 Pags., 4 Tabls., 4 Figs. The definitive version is available at: http://link.springer.com/journal/11295The high economic losses caused by the occurrence of iron chlorosis in Prunus orchards in the Mediterranean area justifies the implementation of breeding programs to generate high-performance rootstocks for different edaphoclimatic area conditions. For that reason, the genetic control of iron chlorosis tolerance was studied in an F1 population derived from a three-way interspecific cross between a Myrobalan plum (P 2175) and an almond × peach hybrid (Felinem). Several phenotypic measurements were assessed to guarantee an accurate data set for genetic analysis. SPAD (Soil and Plant Analyzer Development) values, chlorophyll concentration, and visual diagnostic symptoms were highly correlated with leaf chlorosis in trees. SPAD value was the most reliable measure, since it was an objective, unbiased, and non-destructive method. Two significant quantitative trait loci (QTLs) involved in SPAD and chlorophyll concentration were identified for Felinem in linkage groups 4 and 6. Both QTLs were detected in four of the six consecutive years of the experiment. For P 2175, two of the three putative QTLs identified, pspad4.1 and chl4.1, were placed in linkage group 4. These QTLs were related to the SPAD values and chlorophyll concentration, respectively, and co-localized with QTLs detected in the Felinem map affecting the same traits. Candidate gene PFIT, related to iron metabolism, was localized within the confidence interval of the QTL in linkage group 4. This research suggests an association of this chromosome region with tolerance to iron chlorosis in Prunus, and it provides a first approach to localize candidate genes involved in tolerance to this abiotic stress.This research was funded by MICINN (Spanish Ministry of Science and Innovation, AGL 2008-00283) and co-funded with a FEDER project and Gobierno de Aragón (A44). M.J. Gonzalo was the beneficiary of an I3P-PC2006 contract from the CSIC-FSE.Peer reviewe
    corecore