74 research outputs found

    Isokinetic Knee Strength is Associated with Knee Landing Kinematics during Double-leg Vertical and Depth Jumps

    Get PDF
    Muscular deficiencies, imbalances, or incorrect mechanics in jumping and landing may result in significant knee ligament strain and increased risk for injury in athletes. PURPOSE: This study aimed to identify possible associations between isokinetic knee flexion and extension strength and peak knee flexion and knee adduction landing angles during multiple jumping tasks. We hypothesized that males and females with greater quadriceps and hamstrings strength would land with greater peak knee flexion and less knee adduction. METHODS: After signing informed consent or adolescent assent forms approved by the committee for the protection of human subjects, eighteen participants (8 female; 10 male) volunteered for this project (24.4+8.7 y; 68.3+18.3 kg; 166.5+15.3 cm).The testing session began with anthropometric measurements of the subjects’ height, weight, and lean body mass. Following a standardized cycle warm-up, participants were outfitted with a lower-body marker set and 3D motion capture data were collected during two countermovement vertical jumps (CMVJ) and depth jumps from a small, 30-cm box (SBDJ) and large, 46-cm box (LBDJ). Isokinetic knee flexion-extension peak torques were then collected at 60˚/sec and 240˚/sec. Pearson correlation coefficients were computed between the peak flexion-extension torques at each angular velocity and peak right knee flexion and adduction landing angles. Alpha was set at a critical level of

    Influencia de la castración y del nivel energético de la dieta sobre el crecimiento y composición corporal del borrego pelibuey

    Get PDF
    EI presente trabajo se llevó a cabo con el fin de conocer el comportamiento productivo del borrego Pelibuey castrado alimentado con niveles crecientes de energía en la dieta, teniendo como punto de comparación el comportamiento de animales enteros

    Measures and time points relevant for post-surgical follow-up in patients with inflammatory arthritis: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rheumatic diseases commonly affect joints and other structures in the hand. Surgery is a traditional way to treat hand problems in inflammatory rheumatic diseases with the purposes of pain relief, restore function and prevent progression. There are numerous measures to choose from, and a combination of outcome measures is recommended. This study evaluated if instruments commonly used in rheumatologic clinical practice are suitable to measure outcome of hand surgery and to identify time points relevant for follow-up.</p> <p>Methods</p> <p>Thirty-one patients (median age 56 years, median disease duration 15 years) with inflammatory rheumatic disease and need for post-surgical occupational therapy intervention formed this pilot study group.</p> <p>Hand function was assessed regarding grip strength (Grippit), pain (VAS), range of motion (ROM) (Signals of Functional Impairment (SOFI)) and grip ability (Grip Ability Test (GAT)). Activities of daily life (ADL) were assessed by means of Disabilities of the Arm, Shoulder and Hand Outcome (DASH) and Canadian Occupational Performance Measure (COPM). The instruments were evaluated by responsiveness and feasibility; follow-up points were 0, 3, 6 and 12 months.</p> <p>Results</p> <p>All instruments showed significant change at one or more follow-up points. Satisfaction with activities (COPM) showed the best responsiveness (SMR>0.8), while ROM measured with SOFI had low responsiveness at most follow-up time points. The responsiveness of the instruments was stable between 6 and 12 month follow-up which imply that 6 month is an appropriate time for evaluating short-term effect of hand surgery in rheumatic diseases.</p> <p>Conclusion</p> <p>We suggest a core set of instruments measuring pain, grip strength, grip ability, perceived symptoms and self-defined daily activities. This study has shown that VAS pain, the Grippit instrument, GAT, DASH symptom scale and COPM are suitable outcome instruments for hand surgery, while SOFI may be a more insensitive test. However, the feasibility of this protocol in clinical practice awaits prospective studies.</p

    Tg2576 Cortical Neurons That Express Human Ab Are Susceptible to Extracellular Aβ-Induced, K+ Efflux Dependent Neurodegeneration

    Get PDF
    Background: One of the key pathological features of AD is the formation of insoluble amyloid plaques. The major constituent of these extracellular plaques is the beta-amyloid peptide (Aβ), although Aβ is also found to accumulate intraneuronally in AD. Due to the slowly progressive nature of the disease, it is likely that neurons are exposed to sublethal concentrations of both intracellular and extracellular Aβ for extended periods of time. Results: In this study, we report that daily exposure to a sublethal concentration of Aβ1-40 (1 μM) for six days induces substantial apoptosis of cortical neurons cultured from Tg2576 mice (which express substantial but sublethal levels of intracellular Aβ). Notably, untreated Tg2576 neurons of similar age did not display any signs of apoptosis, indicating that the level of intracellular Aβ present in these neurons was not the cause of toxicity. Furthermore, wildtype neurons did not become apoptotic under the same chronic Aβ1-40 treatment. We found that this apoptosis was linked to Tg2576 neurons being unable to maintain K⁺ homeostasis following Aβ treatment. Furthermore, blocking K⁺ efflux protected Tg2576 neurons from Aβ-induced neurotoxicity. Interestingly, chronic exposure to 1 μM Aβ1-40 caused the generation of axonal swellings in Tg2576 neurons that contained dense concentrations of hyperphosphorylated tau. These were not observed in wildtype neurons under the same treatment conditions. Conclusions: Our data suggest that when neurons are chronically exposed to sublethal levels of both intra- and extra-cellular Aβ, this causes a K⁺-dependent neurodegeneration that has pathological characteristics similar to AD.9 page(s

    Interaction of Hydrogen with Graphitic Surfaces, Clean and Doped with Metal Clusters

    Get PDF
    Producción CientíficaHydrogen is viewed as a possible alternative to the fossil fuels in transportation. The technology of fuel-cell engines is fully developed, and the outstanding remaining problem is the storage of hydrogen in the vehicle. Porous materials, in which hydrogen is adsorbed on the pore walls, and in particular nanoporous carbons, have been investigated as potential onboard containers. Furthermore, metallic nanoparticles embedded in porous carbons catalyze the dissociation of hydrogen in the anode of the fuel cells. For these reasons the interaction of hydrogen with the surfaces of carbon materials is a topic of high technological interest. Computational modeling and the density functional formalism (DFT) are helping in the task of discovering the basic mechanisms of the interaction of hydrogen with clean and doped carbon surfaces. Planar and curved graphene provide good models for the walls of porous carbons. We first review work on the interaction of molecular and atomic hydrogen with graphene and graphene nanoribbons, and next we address the effects due to the presence of metal clusters on the surface because of the evidence of their role in enhancing hydrogen storage.Ministerio de Economía, Industria y Competitividad (Grant MAT2014-54378-R

    Editorial

    No full text

    El rol de la mujer en la medicina

    No full text
    corecore