135 research outputs found

    Detection of vorticity in Bose-Einstein condensed gases by matter-wave interference

    Full text link
    A phase-slip in the fringes of an interference pattern is an unmistakable characteristic of vorticity. We show dramatic two-dimensional simulations of interference between expanding condensate clouds with and without vorticity. In this way, vortices may be detected even when the core itself cannot be resolved.Comment: 3 pages, RevTeX, plus 6 PostScript figure

    Quantum Noise and Superluminal Propagation

    Get PDF
    Causal "superluminal" effects have recently been observed and discussed in various contexts. The question arises whether such effects could be observed with extremely weak pulses, and what would prevent the observation of an "optical tachyon." Aharonov, Reznik, and Stern (ARS) [Phys. Rev. Lett., vol. 81, 2190 (1998)] have argued that quantum noise will preclude the observation of a superluminal group velocity when the pulse consists of one or a few photons. In this paper we reconsider this question both in a general framework and in the specific example, suggested by Chiao, Kozhekin, and Kurizki [Phys. Rev. Lett., vol. 77, 1254 (1996)], of off-resonant, short-pulse propagation in an optical amplifier. We derive in the case of the amplifier a signal-to-noise ratio that is consistent with the general ARS conclusions when we impose their criteria for distinguishing between superluminal propagation and propagation at the speed c. However, results consistent with the semiclassical arguments of CKK are obtained if weaker criteria are imposed, in which case the signal can exceed the noise without being "exponentially large." We show that the quantum fluctuations of the field considered by ARS are closely related to superfluorescence noise. More generally we consider the implications of unitarity for superluminal propagation and quantum noise and study, in addition to the complete and truncated wavepackets considered by ARS, the residual wavepacket formed by their difference. This leads to the conclusion that the noise is mostly luminal and delayed with respect to the superluminal signal. In the limit of a very weak incident signal pulse, the superluminal signal will be dominated by the noise part, and the signal-to-noise ratio will therefore be very small.Comment: 30 pages, 1 figure, eps

    Quantum State Reconstruction of a Bose-Einstein Condensate

    Get PDF
    We propose a tomographic scheme to reconstruct the quantum state of a Bose-Einstein condensate, exploiting the radiation field as a probe and considering the atomic internal degrees of freedom. The density matrix in the number state basis can be directly retrieved from the atom counting probabilities.Comment: 11 pages, LaTeX file, no figures, to appear in Europhysics Letter

    Generalized Pseudopotentials for Higher Partial Wave Scattering

    Full text link
    We derive a generalized zero-range pseudopotential applicable to all partial wave solutions to the Schroedinger equation based on a delta-shell potential in the limit that the shell radius approaches zero. This properly models all higher order multipole moments not accounted for with a monopolar delta function at the origin, as used in the familiar Fermi pseudopotential for s-wave scattering. By making the strength of the potential energy dependent, we derive self-consistent solutions for the entire energy spectrum of the realistic potential. We apply this to study two particles in an isotropic harmonic trap, interacting through a central potential, and derive analytic expressions for the energy eigenstates and eigenvalues.Comment: RevTeX 4 pages, 1 figure, final published versio

    A Knob for Changing Light Propagation from Subluminal to Superluminal

    Get PDF
    We show how the application of a coupling field connecting the two lower metastable states of a lambda-system can produce a variety of new results on the propagation of a weak electromagnetic pulse. In principle the light propagation can be changed from subluminal to superluminal. The negative group index results from the regions of anomalous dispersion and gain in susceptibility.Comment: 6 pages,5 figures, typed in RevTeX, accepted in Phys. Rev.

    Pseudopotential model of ultracold atomic collisions in quasi-one- and two-dimensional traps

    Full text link
    We describe a model for s-wave collisions between ground state atoms in optical lattices, considering especially the limits of quasi-one and two dimensional axisymmetric harmonic confinement. When the atomic interactions are modelled by an s-wave Fermi-pseudopotential, the relative motion energy eigenvalues can easily be obtained. The results show that except for a bound state, the trap eigenvalues are consistent with one- and two- dimensional scattering with renormalized scattering amplitudes. For absolute scattering lengths large compared with the tightest trap width, our model predicts a novel bound state of low energy and nearly-isotropic wavefunction extending on the order of the tightest trap width.Comment: 9 pages, 8 figures; submitted to Phys. Rev.

    Entanglement of two interacting bosons in a two dimensional isotropic harmonic trap

    Full text link
    We compute the pair entanglement between two interacting bosons in a two dimensional (2D)isotropic harmonic trap. The interaction potential is modeled by a 2D regularized pseudo-potential. By analytically decomposing the wave function into the single particle basis, we show the dependency of the pair entanglement on the scattering length. Our results turn out to be in good agreements with earlier results using a quasi-2D geometry.Comment: 5 figure

    Feshbach resonances in a quasi-2D atomic gas

    Full text link
    Strongly confining an ultracold atomic gas in one direction to create a quasi-2D system alters the scattering properties of this gas. We investigate the effects of confinement on Feshbach scattering resonances and show that strong confinement results in a shift in the position of the Feshbach resonance as a function of the magnetic field. This shift, as well as the change of the width of the resonance, are computed. We find that the resonance is strongly damped in the thermal gas, but in the condensate the resonance remains sharp due to many-body effects. We introduce a 2D model system, suited for the study of resonant superfluidity, and having the same scattering properties as the tightly confined real system near a Feshbach resonance. Exact relations are derived between measurable quantities and the model parameters.Comment: 8 pages, 2 figure

    Group velocity control in the ultraviolet domain via interacting dark-state resonances

    Full text link
    The propagation of a weak probe field in a laser-driven four-level atomic system is investigated. We choose mercury as our model system, where the probe transition is in the ultraviolet region. A high-resolution peak appears in the optical spectra due to the presence of interacting dark resonances. We show that this narrow peak leads to superluminal light propagation with strong absorption, and thus by itself is only of limited interest. But if in addition a weak incoherent pump field is applied to the probe transition, then the peak structure can be changed such that both sub- and superluminal light propagation or a negative group velocity can be achieved without absorption, controlled by the incoherent pumping strength

    Transparent Anomalous Dispersion and Superluminal Light Pulse Propagation at a Negative Group Velocity

    Full text link
    Anomalous dispersion cannot occur in a transparent passive medium where electromagnetic radiation is being absorbed at all frequencies, as pointed out by Landau and Lifshitz. Here we show, both theoretically and experimentally, that transparent linear anomalous dispersion can occur when a gain doublet is present. Therefore, a superluminal light pulse propagation can be observed even at a negative group velocity through a transparent medium with almost no pulse distortion. Consequently, a {\it negative transit time} is experimentally observed resulting in the peak of the incident light pulse to exit the medium even before entering it. This counterintuitive effect is a direct result of the {\it rephasing} process owing to the wave nature of light and is not at odds with either causality or Einstein's theory of special relativity.Comment: 12 journal pages, 9 figure
    • …
    corecore