The propagation of a weak probe field in a laser-driven four-level atomic
system is investigated. We choose mercury as our model system, where the probe
transition is in the ultraviolet region. A high-resolution peak appears in the
optical spectra due to the presence of interacting dark resonances. We show
that this narrow peak leads to superluminal light propagation with strong
absorption, and thus by itself is only of limited interest. But if in addition
a weak incoherent pump field is applied to the probe transition, then the peak
structure can be changed such that both sub- and superluminal light propagation
or a negative group velocity can be achieved without absorption, controlled by
the incoherent pumping strength