500 research outputs found

    Tumor-Associated Macrophages in Multiple Myeloma: Key Role in Disease Biology and Potential Therapeutic Implications

    Get PDF
    Multiple myeloma (MM) is characterized by multiple relapse and, despite the introduction of novel therapies, the disease becomes ultimately drug-resistant. The tumor microenvironment (TME) within the bone marrow niche includes dendritic cells, T-cytotoxic, T-helper, reactive B-lymphoid cells and macrophages, with a complex cross-talk between these cells and the MM tumor cells. Tumor-associated macrophages (TAM) have an important role in the MM pathogenesis, since they could promote plasma cells proliferation and angiogenesis, further supporting MM immune evasion and progression. TAM are polarized towards M1 (classically activated, antitumor activity) and M2 (alternatively activated, pro-tumor activity) subtypes. Many studies demonstrated a correlation between TAM, disease progression, drug-resistance and reduced survival in lymphoproliferative neoplasms, including MM. MM plasma cells in vitro could favor an M2 TAM polarization. Moreover, a possible correlation between the pro-tumor effect of M2 TAM and a reduced sensitivity to proteasome inhibitors and immunomodulatory drugs was hypothesized. Several clinical studies confirmed CD68/CD163 double-positive M2 TAM were associated with increased microvessel density, chemoresistance and reduced survival, independently of the MM stage. This review provided an overview of the biology and clinical relevance of TAM in MM, as well as a comprehensive evaluation of a potential TAM-targeted immunotherapy

    Drug resistance and minimal residual disease in multiple myeloma

    Get PDF
    Great progress has been made in improving survival in multiple myeloma (MM) patients over the last 30 years. New drugs have been introduced and complete responses are frequently seen. However, the majority of MM patients do experience a relapse at a variable time after treatment, and ultimately the disease becomes drug-resistant following therapies. Recently, minimal residual disease (MRD) detection has been introduced in clinical trials utilizing novel therapeutic agents to measure the depth of response. MRD can be considered as a surrogate for both progression-free and overall survival. In this perspective, the persistence of a residual therapy-resistant myeloma plasma cell clone can be associated with inferior survivals. The present review gives an overview of drug resistance in MM, i.e., mutation of β5 subunit of the proteasome; upregulation of pumps of efflux; heat shock protein induction for proteasome inhibitors; downregulation of CRBN expression; deregulation of IRF4 expression; mutation of CRBN, IKZF1, and IKZF3 for immunomodulatory drugs and decreased target expression; complement protein increase; sBCMA increase; and BCMA down expression for monoclonal antibodies. Multicolor flow cytometry, or next-generation flow, and next-generation sequencing are currently the techniques available to measure MRD with sensitivity at 10-5. Sustained MRD negativity is related to prolonged survival, and it is evaluated in all recent clinical trials as a surrogate of drug efficacy

    Central nervous system myeloma and unusual extramedullary localizations: real life practical guidance

    Get PDF
    Central nervous system localization of multiple myeloma (CNS-MM) accounts for about 1% of all MM during disease course or even rarer at diagnosis. A difference in the origin, i.e., osteodural or primary dural vs leptomeningeal/intraparenchymal, seems to define two distinct types of intracranial myeloma, with different clinical behavior. CNS-MM may occur also as a presentation of MM. Treatment is still unsatisfactory and many treatments have been reported: chemotherapy, intrathecal therapy, and radiotherapy, with dismal prognosis. Other sites of myeloma localization could be also of interest and deserve description. Because of the rarity and aggressiveness of the disease clinicians are often doubtful on how to treat it since there is no general agreement. Moreover, recent drugs such as the anti CD38 monoclonal antibody, immunomodulatory drugs, and proteasome inhibitors have changed the treatment of patients with MM with a significant improvement in overall response and survival. The role of novel agents in CNS MM management and unusual presentations will be discussed as well as the potential role of other new immunomodulatory drugs and proteasome inhibitors that seem to cross the blood-brain barrier. The purpose of this review is to increase awareness of the clinical unusual presentation and neuroradiological findings, give practical diagnostic advice and treatment options algorithm

    Carfilzomib plus dexamethasone in patients with relapsed and refractory multiple myeloma: A retro-prospective observational study

    Get PDF
    Objective: We investigate safety and efficacy in common clinical practice of the combination of carfilzomib and dexamethasone (Kd56) approved for the ENDEAVOR trial for the treatment of relapsed or refractory multiple myeloma. Methods: We retro-prospective analyzed 75 patients in three centers in Tuscany, 48 of whom had a clinically relevant comorbidity and 50 of whom were older than 65 years, treated with a median use in the fourth line of therapy. We assessed the efficacy based on the International Myeloma Working Group criteria. Results: The overall response rate was 60%. Median PFS was 10 months in the general cohort; in patients treated for more than 1 cycle of therapy PFS was 12 months. Quality of response to Kd56 treatment was found to positively impact PFS. Refractory status to previous line of therapy or to lenalidomide or an history of exposure to pomalidomide, seemed to have no impact on survival. We also showed a low adverse events rate, with no neuropathy events, and a relatively small number of cardiovascular events above grade 3 (10%). Conclusion: Kd56 is an effective and well tolerated regimen in highly pretreated and elderly patients with a good safety profile

    Next-generation sequencing for BCR-ABL1 kinase domain mutation testing in patients with chronic myeloid leukemia: A position paper

    Get PDF
    BCR-ABL1 kinase domain (KD) mutation status is considered to be an important element of clinical decision algorithms for chronic myeloid leukemia (CML) patients who do not achieve an optimal response to tyrosine kinase inhibitors (TKIs). Conventional Sanger sequencing is the method currently recommended to test BCR-ABL1 KD mutations. However, Sanger sequencing has limited sensitivity and cannot always discriminate between polyclonal and compound mutations. The use of next-generation sequencing (NGS) is increasingly widespread in diagnostic laboratories and represents an attractive alternative. Currently available data on the clinical impact of NGS-based mutational testing in CML patients do not allow recommendations with a high grade of evidence to be prepared. This article reports the results of a group discussion among an ad hoc expert panel with the objective of producing recommendations on the appropriateness of clinical decisions about the indication for NGS, the performance characteristics of NGS platforms, and the therapeutic changes that could be applied based on the use of NGS in CML. Overall, these recommendations might be employed to inform clinicians about the practical use of NGS in CML

    The third dose of mRNA SARS-CoV-2 vaccines enhances the spike-specific antibody and memory B cell response in myelofibrosis patients

    Get PDF
    Vaccination against SARS-CoV-2 using mRNA-based vaccines has been highly recommended for fragile subjects, including myelofibrosis patients (MF). Available data on the immune responsiveness of MF patients to mRNA SARS-CoV-2 vaccination, and the impact of the therapy with the JAK inhibitor ruxolitinib, are still fragmented. Here, we profile the spike-specific IgG and memory B-cell response in MF patients, treated or not with ruxolitinib, after the second and the third dose of SARS-CoV-2 BNT162b2 (BioNTech) and mRNA-1273 (Moderna) vaccines. Plasma and peripheral blood mononuclear cells samples were collected before vaccination, post the second and the third doses and tested for spike-specific antibodies, ACE2/RBD antibody inhibition binding activity and spike-specific B cells. The third vaccine dose significantly increased the spike-specific IgG titers in both ruxolitinib-treated and untreated patients, and strongly enhanced the percentage of subjects with antibodies capable of in vitro blocking ACE2/RBD interaction, from 50% up to 80%. While a very low frequency of spike-specific B cells was measured in blood 7 days after the second vaccination dose, a strong and significant increase was elicited by the third dose administration, generating a B cell response similar to the one detected in healthy controls. Despite the overall positive impact of the third dose in MF patients, two patients that were under active concomitant immunosuppressive treatment at the time of vaccination, and a patient that received lymphodepleting therapies in the past, remained low responders. The third mRNA vaccine dose strongly increases the SARS-CoV-2 specific humoral and B cell responses in MF patients, promoting a reactivation of the immune response similar to the one observed in healthy controls

    Next-generation sequencing for BCR-ABL1 kinase domain mutation testing in patients with chronic myeloid leukemia: A position paper

    Get PDF
    BCR-ABL1 kinase domain (KD) mutation status is considered to be an important element of clinical decision algorithms for chronic myeloid leukemia (CML) patients who do not achieve an optimal response to tyrosine kinase inhibitors (TKIs). Conventional Sanger sequencing is the method currently recommended to test BCR-ABL1 KD mutations. However, Sanger sequencing has limited sensitivity and cannot always discriminate between polyclonal and compound mutations. The use of next-generation sequencing (NGS) is increasingly widespread in diagnostic laboratories and represents an attractive alternative. Currently available data on the clinical impact of NGS-based mutational testing in CML patients do not allow recommendations with a high grade of evidence to be prepared. This article reports the results of a group discussion among an ad hoc expert panel with the objective of producing recommendations on the appropriateness of clinical decisions about the indication for NGS, the performance characteristics of NGS platforms, and the therapeutic changes that could be applied based on the use of NGS in CML. Overall, these recommendations might be employed to inform clinicians about the practical use of NGS in CML

    The safety and clinical effectiveness of rapid infusion with CT-P10 in patients with non-Hodgkin's lymphoma or chronic lymphocytic leukemia: A retrospective non-interventional post-authorization safety study in Europe

    Get PDF
    Rapid infusion (RI) of the rituximab biosimilar CT-P10 is currently only an approved treatment regimen for the treatment of rheumatoid arthritis. Although both CT-P10 and reference rituximab are known to be frequently administered using a RI regimen (≤90 min) in clinical practice, published data on the safety of RI of CT-P10 in patients with NHL and CLL are limited. Hence, this study collected real-world safety and effectiveness data on RI-CT-P10 from the medical records of 196 patients with NHL or CLL in 10 European centers, 6 months after the date of the first RI (index date); the infusion-related reaction (IRR) rate was compared to previously published data. Ten percent (95% confidence interval 6%–15%; n = 20/196) of patients experienced an infusion-related reaction (IRR) on day 1–2 post-index, which was not significantly different (p = 0.45) to the IRR rate for rituximab described in a previous meta-analysis (8.8%). During the observation period, 2% of patients experienced grade 3–5 IRRs and 85% (n = 166) experienced an adverse event (non-IRR). The most common reason for discontinuation of first-line CT-P10 was planned treatment completion (81%; n = 158). Complete response and partial response to CT-P10 was observed in 74% (n = 142/192) and 22% (n = 42/192) of patients, respectively. The results of this real-world study demonstrate that the safety and effectiveness profile of RI-CT-P10 is similar to RI of reference rituximab and therefore support the current use of RI-CT-P10 in patients with NHL and CLL

    Uptake of synthetic low density lipoprotein by leukemic stem cells — a potential stem cell targeted drug delivery strategy

    Get PDF
    Chronic Myeloid Leukemia (CML) stem/progenitor cells, which over-express Bcr-Abl, respond to imatinib by a reversible block in proliferation without significant apoptosis. As a result, patients are unlikely to be cured owing to the persistence of leukemic quiescent stem cells (QSC) capable of initiating relapse. Previously, we have reported that intracellular levels of imatinib in primary primitive CML cells (CD34<sup>+</sup>38<sup>lo/−</sup>), are significantly lower than in CML progenitor cells (total CD34<sup>+</sup>) and leukemic cell lines. The aim of this study was to determine if potentially sub-therapeutic intracellular drug concentrations in persistent leukemic QSC may be overcome by targeted drug delivery using synthetic Low Density Lipoprotein (sLDL) particles. As a first step towards this goal, however, the extent of uptake of sLDL by leukemic cell lines and CML patient stem/progenitor cells was investigated. Results with non-drug loaded particles have shown an increased and preferential uptake of sLDL by Bcr-Abl positive cell lines in comparison to Bcr-Abl negative. Furthermore, CML CD34<sup>+</sup> and primitive CD34<sup>+</sup>38<sup>lo/−</sup> cells accumulated significantly higher levels of sLDL when compared with non-CML CD34<sup>+</sup> cells. Thus, drug-loading the sLDL nanoparticles could potentially enhance intracellular drug concentrations in primitive CML cells and thus aid their eradication
    • …
    corecore