225 research outputs found
Pengembangan Ketrampilan Sosial Melalui Permainan Semut Guyub pada Anak Kelompok B Semester Gasal Di TK DHARMA WANITA I Patihan Sidoharjo Sragen Tahun 2014/2015
Penelitian ini bertujuan untuk mengembangkan ketrampilan sosial anak melalui permainan semut guyub di TK Dharma Wanita l Patihan Sidoharjo Sragen. Jenis Penelitian adalah Penelitian Tindakan Kelas, subyek penelitian adalah peserta didik kelompok B.Metode pengumpulan data menggunakan metode observasi untuk mengetahui pengembangan ketrampilan sosial anak. Analisis data melalui analisis komparatif untuk menganalisis data kegiatan pengembangan ketrampilan sosial
,yaitu bersedia bermain dengan teman sebaya, membantu memecahkan masalah, bekerjasama, toleransi, mengekspresikan perasaan.Data tentang Ketrampilan Sosial anak dalam pembelajaran diperoleh dari lembar observasi yang dianalisis dengan teknik persentase. Dari hasil penelitian diperoleh rata-rata persentase ketrampilan sosialanak 27%, pada siklus l rata-rata persentase63%, sedangkan siklus ll rata-ratanya 82 %. Hal ini menunjukkan bahwa ketrampilan sosial anak mengalami peningkatan dari sebelum tindakan sampai dilakukan siklus ll. Jadi dapat disimpulkan bahwa permainan semut guyub dalam pembelajaran dapat meningkatkan perkembangan ketrampilan anak.Disini peneliti menyarankan bahwa untuk penelitian selanjutnya agar dapat lebih meningkatkan fungsi darikegiatan bermain pada pembelajaran anak, yang merupakan karya inovasi yang dapat meningkatkan lebih banyak aspek yang harus dikembangkan untuk anak usia dini
Recommended from our members
XPO1 inhibition by selinexor induces potent cytotoxicity against high grade bladder malignancies.
Treatment options for high grade urothelial cancers are limited and have remained largely unchanged for several decades. Selinexor (KPT-330), a first in class small molecule that inhibits the nuclear export protein XPO1, has shown efficacy as a single agent treatment for numerous different malignancies, but its efficacy in limiting bladder malignancies has not been tested. In this study we assessed selinexor-dependent cytotoxicity in several bladder tumor cells and report that selinexor effectively reduced XPO1 expression and limited cell viability in a dose dependent manner. The decrease in cell viability was due to an induction of apoptosis and cell cycle arrest. These results were recapitulated in in vivo studies where selinexor decreased tumor growth. Tumors treated with selinexor expressed lower levels of XPO1, cyclin A, cyclin B, and CDK2 and increased levels of RB and CDK inhibitor p27, a result that is consistent with growth arrest. Cells expressing wildtype RB, a potent tumor suppressor that promotes growth arrest and apoptosis, were most susceptible to selinexor. Cell fractionation and immunofluorescence studies showed that selinexor treatment increased nuclear RB levels and mechanistic studies revealed that RB ablation curtailed the response to the drug. Conversely, limiting CDK4/6 dependent RB phosphorylation by palbociclib was additive with selinexor in reducing bladder tumor cell viability, confirming that RB activity has a role in the response to XPO1 inhibition. These results provide a rationale for XPO1 inhibition as a novel strategy for the treatment of bladder malignancies
Model Order Reduction for Rotating Electrical Machines
The simulation of electric rotating machines is both computationally
expensive and memory intensive. To overcome these costs, model order reduction
techniques can be applied. The focus of this contribution is especially on
machines that contain non-symmetric components. These are usually introduced
during the mass production process and are modeled by small perturbations in
the geometry (e.g., eccentricity) or the material parameters. While model order
reduction for symmetric machines is clear and does not need special treatment,
the non-symmetric setting adds additional challenges. An adaptive strategy
based on proper orthogonal decomposition is developed to overcome these
difficulties. Equipped with an a posteriori error estimator the obtained
solution is certified. Numerical examples are presented to demonstrate the
effectiveness of the proposed method
Ferrochelatase is a therapeutic target for ocular neovascularization
Ocular neovascularization underlies major blinding eye diseases such as “wet” age-related macular degeneration (AMD). Despite the successes of treatments targeting the vascular endothelial growth factor (VEGF) pathway, resistant and refractory patient populations necessitate discovery of new therapeutic targets. Using a forward chemical genetic approach, we identified the heme synthesis enzyme ferrochelatase (FECH) as necessary for angiogenesis in vitro and in vivo. FECH is overexpressed in wet AMD eyes and murine choroidal neovascularization; siRNA knockdown of Fech or partial loss of enzymatic function in the Fechm1Pas mouse model reduces choroidal neovascularization. FECH depletion modulates endothelial nitric oxide synthase function and VEGF receptor 2 levels. FECH is inhibited by the oral antifungal drug griseofulvin, and this compound ameliorates choroidal neovascularization in mice when delivered intravitreally or orally. Thus, FECH inhibition could be used therapeutically to block ocular neovascularization
The discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition
Acetylation of histone lysine residues is one of the most well-studied post-translational modifications of chromatin, selectively recognized by bromodomain “reader” modules. Inhibitors of the bromodomain and extra terminal domain (BET) family of bromodomains have shown profound anticancer and anti-inflammatory properties, generating much interest in targeting other bromodomain-containing proteins for disease treatment. Herein, we report the discovery of I-BRD9, the first selective cellular chemical probe for bromodomain-containing protein 9 (BRD9). I-BRD9 was identified through structure-based design, leading to greater than 700-fold selectivity over the BET family and 200-fold over the highly homologous bromodomain-containing protein 7 (BRD7). I-BRD9 was used to identify genes regulated by BRD9 in Kasumi-1 cells involved in oncology and immune response pathways and to the best of our knowledge, represents the first selective tool compound available to elucidate the cellular phenotype of BRD9 bromodomain inhibition
ON CONVERGENCE OF NEWTON\u27S METHOD
A new theorem has been given that generalizes Rall\u27s theorem
Large family with both parents affected by distinct BRCA1 mutations: implications for genetic testing
Although the probability of both parents being affected by BRCA1 mutations is not negligible, such families have not been systematically described in the literature. Here we present a large breast-ovarian cancer family, where 3 sisters and 1 half-sister inherited maternal BRCA1 5382insC mutation while the remaining 2 sisters carried paternal BRCA1 1629delC allele. No BRCA1 homozygous mutations has been detected, that is consistent with the data on lethality of BRCA1 knockout mice. This report exemplifies that the identification of a single cancer-predisposing mutation within the index patient may not be sufficient in some circumstances. Ideally, all family members affected by breast or ovarian tumor disease have to be subjected to the DNA testing, and failure to detect the mutation in any of them calls for the search of the second cancer-associated allele
Integration of cardiovascular risk assessment with COVID-19 using artificial intelligence
Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring. This perspective narrative shows the powerful methods of AI for tracking cardiovascular risks. We conclude that AI could potentially become an integral part of the COVID-19 disease management system. Countries, large and small, should join hands with the WHO in building biobanks for scientists around the world to build AI-based platforms for tracking the cardiovascular risk assessment during COVID-19 times and long-term follow-up of the survivors
Result of randomized control trial to increase breast health awareness among young females in Malaysia
- …
