191 research outputs found

    The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15

    Get PDF
    Sound and acceleration are detected by hair bundles, mechanosensory structures located at the apical pole of hair cells in the inner ear. The different elements of the hair bundle, the stereocilia and a kinocilium, are interconnected by a variety of link types. One of these links, the tip link, connects the top of a shorter stereocilium with the lateral membrane of an adjacent taller stereocilium and may gate the mechanotransducer channel of the hair cell. Mass spectrometric and Western blot analyses identify the tip-link antigen, a hitherto unidentified antigen specifically associated with the tip and kinocilial links of sensory hair bundles in the inner ear and the ciliary calyx of photoreceptors in the eye, as an avian ortholog of human protocadherin-15, a product of the gene for the deaf/blindness Usher syndrome type 1F/DFNB23 locus. Multiple protocadherin-15 transcripts are shown to be expressed in the mouse inner ear, and these define four major isoform classes, two with entirely novel, previously unidentified cytoplasmic domains. Antibodies to the three cytoplasmic domain-containing isoform classes reveal that each has a different spatiotemporal expression pattern in the developing and mature inner ear. Two isoforms are distributed in a manner compatible for association with the tip-link complex. An isoform located at the tips of stereocilia is sensitive to calcium chelation and proteolysis with subtilisin and reappears at the tips of stereocilia as transduction recovers after the removal of calcium chelators. Protocadherin-15 is therefore associated with the tip-link complex and may be an integral component of this structure and/or required for its formatio

    Draft genome sequence of Saccharopolyspora rectivirgula

    Get PDF
    We have sequenced the genome of Saccharopolyspora rectivirgula, the causative agent of farmer’s lung disease. The draft genome consists of 182 contigs totaling 3,977,051 bp, with a GC content of 68.9%

    Molecular dissection of the migrating posterior lateral line primordium during early development in zebrafish

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Development of the posterior lateral line (PLL) system in zebrafish involves cell migration, proliferation and differentiation of mechanosensory cells. The PLL forms when cranial placodal cells delaminate and become a coherent, migratory primordium that traverses the length of the fish to form this sensory system. As it migrates, the primordium deposits groups of cells called neuromasts, the specialized organs that contain the mechanosensory hair cells. Therefore the primordium provides both a model for studying collective directional cell migration and the differentiation of sensory cells from multipotent progenitor cells.</p> <p>Results</p> <p>Through the combined use of transgenic fish, Fluorescence Activated Cell Sorting and microarray analysis we identified a repertoire of key genes expressed in the migrating primordium and in differentiated neuromasts. We validated the specific expression in the primordium of a subset of the identified sequences by quantitative RT-PCR, and by <it>in situ </it>hybridization. We also show that interfering with the function of two genes, <it>f11r </it>and <it>cd9b</it>, defects in primordium migration are induced. Finally, pathway construction revealed functional relationships among the genes enriched in the migrating cell population.</p> <p>Conclusions</p> <p>Our results demonstrate that this is a robust approach to globally analyze tissue-specific expression and we predict that many of the genes identified in this study will show critical functions in developmental events involving collective cell migration and possibly in pathological situations such as tumor metastasis.</p

    Transcriptional signature of accessory cells in the lateral line, using the Tnk1bp1:EGFP transgenic zebrafish line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of the structural and molecular similarities between the two systems, the lateral line, a fish and amphibian specific sensory organ, has been widely used in zebrafish as a model to study the development/biology of neuroepithelia of the inner ear. Both organs have hair cells, which are the mechanoreceptor cells, and supporting cells providing other functions to the epithelium. In most vertebrates (excluding mammals), supporting cells comprise a pool of progenitors that replace damaged or dead hair cells. However, the lack of regenerative capacity in mammals is the single leading cause for acquired hearing disorders in humans.</p> <p>Results</p> <p>In an effort to understand the regenerative process of hair cells in fish, we characterized and cloned an <it>egfp </it>transgenic stable fish line that trapped <it>tnks1bp1</it>, a highly conserved gene that has been implicated in the maintenance of telomeres' length. We then used this Tg(<it>tnks1bp1</it>:EGFP) line in a FACsorting strategy combined with microarrays to identify new molecular markers for supporting cells.</p> <p>Conclusions</p> <p>We present a Tg(<it>tnks1bp1</it>:EGFP) stable transgenic line, which we used to establish a transcriptional profile of supporting cells in the zebrafish lateral line. Therefore we are providing a new set of markers specific for supporting cells as well as candidates for functional analysis of this important cell type. This will prove to be a valuable tool for the study of regeneration in the lateral line of zebrafish in particular and for regeneration of neuroepithelia in general.</p

    In-plane and through-plane gas permeability of carbon fiber electrode backing layers

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.jpowsour.2006.06.096 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The absolute gas permeability of several common gas diffusion layer (GDL) materials for polymer electrolyte membrane fuel cells was measured. Measurements were made in three perpendicular directions to investigate anisotropic properties. Most materials were found to display higher in-plane permeability than through-plane permeability. The permeability in the two perpendicular in-plane directions was found to display significant anisotropy. Materials with the most highly aligned fibers showed the highest anisotropy and the permeability could differ by as much as a factor of 2. In-plane permeability was also measured as the GDL was compressed to different thicknesses. Typically, compression of a sample to half its initial thickness resulted in a decrease in permeability by an order of magnitude. Since the change in GDL thickness during compression can be converted to porosity, the relationship between measured permeability and porosity was compared to various models available in the literature, one of which allows the estimation of anisotropic tortuosity. The effect of inertia on fluid flow was also determined and found to vary inversely with permeability, in agreement with available correlations. The results of this work will be useful for 3D modeling studies where knowledge of permeability and effective diffusivity tensors is required.Natural Science and Engineering Research Council of Canada (NSERC

    PENGEMBANGAN MODEL MANAJEMEN BERBASIS SEKOLAH YANG LEBIH MENGEDEPANKAN PELIBATAN PARTISIPASI MASYARAKAT UNTUK IMPLEMENTASI KURIKULUM 2013 DI BENGKULU

    Get PDF
    Penelitian ini bertujuan untuk mengembangkan model manajemen berbasis sekolah yang lebih mengedepankan pelibatan partisipasi masyarakat dalam rangka implementtasi kurikulum 2013 di Bengkulu. Penelitian tahun-1 ditujukan untuk mendeskripsikan faktor ekonomi, sosial, dan budaya masyarakat yang potensial berkontribusi terhadap pelaksanaan program sekolah. Berdasarkan data ekonomi, sosial, dan budaya tersebut maka pada tahun ke-2 peneliti akan memberikan penguatan pelibatan partisipasi masyarakat guna memberikan dukungan terhadap implementasi program sekolah, mengajak masyarakat untuk mengidentifikasi apa yang dapat mereka sumbangkan untuk kepentingan pendidikan di sekolah, dan sekolah menemukan cara yang tepat untuk meningkatkan partisipasi masyarakat. Pendekatan yang digunakan dalam mencapai tujuan tersebut antara lain dengan jalan: (1) menetapkan sekolah yang relevan dengan masalah dan bersedia menjadi subjek penelitian; (2) mengidentifikasi faktor ekonomi, sosial dan budaya masyarakat yang berpeluang memberikan kontribusi dalam pelaksanaan program sekolah; dan (3) memberikan penguatan terhadap komite sekolah agar dapat meningkatkan partisipasi masyarakat guna mendukung implementasi kurikulum 2013. Luaran penelitian tahun-1 antara lain berupa: (1) tersusun instrumen identifikasi potensi sekolah dan faktor ekonomi, sosial, dan budaya masyarakat yang potensial memberikan kontribusi pada pelaksanaan program sekolah; (2) deskripsi potensi sekolah yang dapat digunakan sebagai media pelibatan partisipasi masyarakat; (3) deskripsi faktor ekonomi, sosial, dan budaya masyarakat yang potensial memberikan kontribusi pada pelaksanaan program sekolah; dan (4) tersusun standar prosedur pelibatan partisipasi masyarakat dalam implementasi program sekolah. Semua hasil tesebut disajikan dalam (A) Laporan Penelitian; (B) Poster; (C) Makalah Seminar Internasional; (D) Proposal Penelitian Tahun-2

    Interactions between Kluyveromyces marxianus from cheese origin and the intestinal symbiont Bacteroides thetaiotaomicron: Impressive antioxidative effects

    Full text link
    The effects of yeast Kluyveromyces marxianus S-2-05, of cheese origin, were assessed on the intestine anaerobe symbiont Bacteroides thetaiotaomicron ATCC 29741 to unveil any changes in its antioxidant properties. To this end, these microorganisms were grown and incubated either separately, or co-incubated, under anaerobic atmosphere. Afterwards, the microbial cells were recovered and washed, and extracts were prepared using a sterile detergent solution to mimic the intestine detergent content. The extracts prepared from K. marxianus S-2-05 and reference strain K. marxianus MUCL 29917, grown under different conditions, were assessed for their antioxidant properties against superoxide anion and hydrogen peroxide. Extracts from both yeasts showed antioxidative effects, which were particularly important for K. marxianus S-02-5 after anaerobic incubation. Moreover, K. marxianus S-02-5 displayed a high level of activity against the aforementioned reactive oxygen species, enhancing that of B. thetaiotaomicron ATCC 29741, after the co-incubation process. Two-dimensional polyacrylamide gel electrophoresis was used to separate the proteins extracted. Superoxide dismutase, thiol peroxidase, rubrerythrin -intensively produced by B. thetaiotaomicron induced by the yeast-were identified by mass spectrometry. The antioxidative potential evidenced for K. marxianus S-02-5 is another advantage which could justify the utilization of this strain as a probiotic for countering intestinal inflammatory processes. © 2017 Elsevier Lt

    Species Review of Amphibian Extinction Risks in Madagascar: Conclusions from the Global Amphibian Assessment

    Full text link
    We assessed the extinction risks of Malagasy amphibians by evaluating their distribution, occurrence in protected areas, population trends, habitat quality, and prevalence in commercial trade. We estimated and mapped the distribution of each of the 220 described Malagasy species and applied, for the first time, the IUCN Red List categories and criteria to all species described at the time of the assessment. Nine species were categorized as critically endangered, 21 as endangered, and 25 as vulnerable. The most threatened species occur on the High Plateau and/or have been subjected to overcollection for the pet trade, but restricted extent of occurrence and ongoing habitat destruction were identified as the most important factors influencing extinction threats. The two areas with the majority of threatened species were the northern Tsaratanana-Marojejy-Masoala highlands and the southeastern Anosy Mountains. The current system of protected areas includes 82% of the threatened amphibian species. Of the critically endangered species, 6 did not occur in any protected area. For conservation of these species we recommend the creation of a reserve for the species of the Mantella aurantiaca group, the inclusion of two Scaphiophryne species in the Convention on the International Trade in Endangered Species Appendix II, and the suspension of commercial collecting for Mantella cowani . Field surveys during the last 15 years reveal no pervasive extinction of Malagasy amphibians resulting from disease or other agents, as has been reported in some other areas of the world.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75394/1/j.1523-1739.2005.00249.x.pd

    Transcriptional Response of Zebrafish Embryos Exposed to Neurotoxic Compounds Reveals a Muscle Activity Dependent hspb11 Expression

    Get PDF
    Acetylcholinesterase (AChE) inhibitors are widely used as pesticides and drugs. Their primary effect is the overstimulation of cholinergic receptors which results in an improper muscular function. During vertebrate embryonic development nerve activity and intracellular downstream events are critical for the regulation of muscle fiber formation. Whether AChE inhibitors and related neurotoxic compounds also provoke specific changes in gene transcription patterns during vertebrate development that allow them to establish a mechanistic link useful for identification of developmental toxicity pathways has, however, yet not been investigated. Therefore we examined the transcriptomic response of a known AChE inhibitor, the organophosphate azinphos-methyl (APM), in zebrafish embryos and compared the response with two non-AChE inhibiting unspecific control compounds, 1,4-dimethoxybenzene (DMB) and 2,4-dinitrophenol (DNP). A highly specific cluster of APM induced gene transcripts was identified and a subset of strongly regulated genes was analyzed in more detail. The small heat shock protein hspb11 was found to be the most sensitive induced gene in response to AChE inhibitors. Comparison of expression in wildtype, ache and sopfixe mutant embryos revealed that hspb11 expression was dependent on the nicotinic acetylcholine receptor (nAChR) activity. Furthermore, modulators of intracellular calcium levels within the whole embryo led to a transcriptional up-regulation of hspb11 which suggests that elevated intracellular calcium levels may regulate the expression of this gene. During early zebrafish development, hspb11 was specifically expressed in muscle pioneer cells and Hspb11 morpholino-knockdown resulted in effects on slow muscle myosin organization. Our findings imply that a comparative toxicogenomic approach and functional analysis can lead to the identification of molecular mechanisms and specific marker genes for potential neurotoxic compounds
    corecore