731 research outputs found

    Temperature dependence of the vibrational spectrum of porphycene: a qualitative failure of classical-nuclei molecular dynamics

    No full text
    The temperature dependence of vibrational spectra can provide information about structural changes of a system and also serve as a probe to identify different vibrational mode couplings. Fully anharmonic temperature-dependent calculations of these quantities are challenging due to the cost associated with statistically converging trajectory-based methods, especially when accounting for nuclear quantum effects. Here, we train a high-dimensional neural network potential energy surface for the porphycene molecule based on data generated with DFT-B3LYP, including pairwise van der Waals interactions. In addition, we fit a kernel ridge regression model for the molecular dipole moment surface. The combination of this machinery with thermostatted path integral molecular dynamics (TRPMD) allows us to obtain well-converged, full-dimensional, fully-anharmonic vibrational spectra including nuclear quantum effects, without sacrificing the first-principles quality of the potential-energy surface or the dipole surface. Within this framework, we investigate the temperature and isotopologue dependence of the high-frequency vibrational fingerprints of porphycene. While classical-nuclei dynamics predicts a red shift of the vibrations encompassing the NH and CH stretches, TRPMD predicts a strong blue shift in the NH-stretch region and a smaller one in the CH-stretch region. We explain this behavior by analyzing the modulation of the effective potential with temperature, which arises from vibrational coupling between quasi-classical thermally activated modes and high-frequency quantized modes

    Non-Adiabatic Potential-Energy Surfaces by Constrained Density-Functional Theory

    Get PDF
    Non-adiabatic effects play an important role in many chemical processes. In order to study the underlying non-adiabatic potential-energy surfaces (PESs), we present a locally-constrained density-functional theory approach, which enables us to confine electrons to sub-spaces of the Hilbert space, e.g. to selected atoms or groups of atoms. This allows to calculate non-adiabatic PESs for defined charge and spin states of the chosen subsystems. The capability of the method is demonstrated by calculating non-adiabatic PESs for the scattering of a sodium and a chlorine atom, for the interaction of a chlorine molecule with a small metal cluster, and for the dissociation of an oxygen molecule at the Al(111) surface.Comment: 11 pages including 7 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Analyse von Kritikalitätsbedingungen im BE-Lagerbecken

    Get PDF

    Non-adiabatic Effects in the Dissociation of Oxygen Molecules at the Al(111) Surface

    Full text link
    The measured low initial sticking probability of oxygen molecules at the Al(111) surface that had puzzled the field for many years was recently explained in a non-adiabatic picture invoking spin-selection rules [J. Behler et al., Phys. Rev. Lett. 94, 036104 (2005)]. These selection rules tend to conserve the initial spin-triplet character of the free O2 molecule during the molecule's approach to the surface. A new locally-constrained density-functional theory approach gave access to the corresponding potential-energy surface (PES) seen by such an impinging spin-triplet molecule and indicated barriers to dissociation which reduce the sticking probability. Here, we further substantiate this non-adiabatic picture by providing a detailed account of the employed approach. Building on the previous work, we focus in particular on inaccuracies in present-day exchange-correlation functionals. Our analysis shows that small quantitative differences in the spin-triplet constrained PES obtained with different gradient-corrected functionals have a noticeable effect on the lowest kinetic energy part of the resulting sticking curve.Comment: 17 pages including 11 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Rituximab therapy for pure red cell aplasia due to anti-epoetin antibodies in a woman treated with epoetin-alfa: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Pure red cell aplasia due to anti-epoetin antibodies is a known complication of epoetin therapy for anemia due to chronic kidney disease. This disease has not previously been well described in the setting of therapy for chronic hepatitis C virus infection. While treatment for pure red cell aplasia due to anti-epoetin antibodies is usually with immunosuppressive therapy such as calcineurin inhibition, the safety of this treatment in chronic hepatitis C virus infection is unknown. To date, little has been published on the efficacy of rituximab on pure red cell aplasia due to anti-epoetin antibodies.</p> <p>Case presentation</p> <p>This report describes a 65-year-old Asian-American woman who developed pure red cell aplasia from high titer neutralizing anti-epoetin antibodies after epoetin-alfa therapy during ribavirin and peg-interferon treatment for chronic hepatitis C virus infection. We describe the outcome of her treatment with rituximab. The reticulocyte count increased, and anti-epoetin antibody titer decreased with a loss of neutralizing activity <it>in vitro</it>, leading to a reduction in blood transfusions, and eventual resolution of anemia, without reactivation of hepatitis C virus.</p> <p>Conclusion</p> <p>The diagnosis of pure red cell aplasia from anti-epoetin antibodies should be considered in patients undergoing therapy for chronic hepatitis C virus infection who develop severe anemia after administration of erythropoietin or darbepoetin. Though it is currently an off-label indication, rituximab is a therapeutic option for patients with pure red cell aplasia due to anti-epoetin antibodies.</p

    An experimentally validated neural-network potential energy surface for H atoms on free-standing graphene in full dimensionality

    Full text link
    We present a first principles-quality potential energy surface (PES) describing the inter-atomic forces for hydrogen atoms interacting with free-standing graphene. The PES is a high-dimensional neural network potential that has been parameterized to 75945 data points computed with density-functional theory employing the PBE-D2 functional. Improving over a previously published PES (Jiang et al., Science, 2019, 364, 379), this neural network exhibits a realistic physisorption well and achieves a 10-fold reduction in the RMS fitting error, which is 0.6 meV/atom. We used this PES to calculate about 1.5 million classical trajectories with carefully selected initial conditions to allow for direct comparison to results of H- and D-atom scattering experiments performed at incidence translational energy of 1.9 eV and a surface temperature of 300 K. The theoretically predicted scattering angular and energy loss distributions are in good agreement with experiment, despite the fact that the experiments employed graphene grown on Pt(111). The remaining discrepancies between experiment and theory are likely due to the influence of the Pt substrate only present in the experiment.Comment: submitted to PCCP, 8 figures, reference arXiv:2007.03372 adde

    Coulomb Gap and Correlated Vortex Pinning in Superconductors

    Full text link
    The positions of columnar pins and magnetic flux lines determined from a decoration experiment on BSCCO were used to calculate the single--particle density of states at low temperatures in the Bose glass phase. A wide Coulomb gap is found, with gap exponent s≈1.2s \approx 1.2, as a result of the long--range interaction between the vortices. As a consequence, the variable--range hopping transport of flux lines is considerably reduced with respect to the non--interacting case, the effective Mott exponent being enhanced from p0=1/3p_0 = 1/3 to peff≈0.5p_{\rm eff} \approx 0.5 for this specific experiment.Comment: 10 pages, Revtex, 4 figures appended as uu-encoded postscript files, also available as hardcopies from [email protected]
    • …
    corecore