research

Coulomb Gap and Correlated Vortex Pinning in Superconductors

Abstract

The positions of columnar pins and magnetic flux lines determined from a decoration experiment on BSCCO were used to calculate the single--particle density of states at low temperatures in the Bose glass phase. A wide Coulomb gap is found, with gap exponent s1.2s \approx 1.2, as a result of the long--range interaction between the vortices. As a consequence, the variable--range hopping transport of flux lines is considerably reduced with respect to the non--interacting case, the effective Mott exponent being enhanced from p0=1/3p_0 = 1/3 to peff0.5p_{\rm eff} \approx 0.5 for this specific experiment.Comment: 10 pages, Revtex, 4 figures appended as uu-encoded postscript files, also available as hardcopies from [email protected]

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020