1,140 research outputs found

    Estimates of Active Region Area Coverage through Simultaneous Measurements of He I λλ\lambda\lambda 5876 and 10830 Lines

    Get PDF
    Simultaneous, high-quality measurements of the neutral helium triplet features at 5876~\AA\ and 10830~\AA, respectively, in a sample of solar-type stars are presented. The observations were made with ESO telescopes at the La Silla Paranal Observatory under program ID 088.D-0028(A) and MPG Utility Run for FEROS 088.A-9029(A). The equivalent widths of these features combined with chromospheric models are utilized to infer the fractional area coverage, or filling factor, of magnetic regions outside of spots. We find that the majority of the sample is characterized by filling factors less than unity. However, discrepancies occur among the coolest K-type and warmest and most rapidly rotating F-type dwarf stars. We discuss these apparently anomalous results and find that in the case of K-type stars they are an artifact of the application of chromospheric models best suited to the Sun than to stars with significantly lower TeffT_\mathrm{eff}. The case of the F-type rapid rotators can be explained with the measurement uncertainties of the equivalent widths, but they may also be due to a non-magnetic heating component in their atmospheres. With the exceptions noted above, preliminary results suggest that the average heating rates in the active regions are the same from one star to the other, differing in the spatially integrated, observed level of activity due to the area coverage. Hence, differences in activity in this sample are mainly due to the filling factor of active regions.Comment: Accepted for publication in The Astrophysical Journa

    Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface

    Full text link
    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).Comment: Supplementary Materials; https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.119.091102/supplementary_material_170801.pd

    Direct Methods in High Resolution Electron Microscopy

    Get PDF
    New approaches are proposed to retrieve the wavefunction at the object and from this, to retrieve the projected structure of the object. The wavefunction is retrieved by capturing images at a series of closely spaced focus values and to process the whole 3D data. The structure of the object is retrieved using a formalism based on electron channelling

    Auto-oscillation threshold, narrow spectral lines, and line jitter in spin-torque oscillators based on MgO magnetic tunnel junctions

    Full text link
    We demonstrate spin torque induced auto-oscillation in MgO-based magnetic tunnel junctions. At the generation threshold, we observe a strong line narrowing down to 6 MHz at 300K and a dramatic increase in oscillator power, yielding spectrally pure oscillations free of flicker noise. Setting the synthetic antiferromagnet into autooscillation requires the same current polarity as the one needed to switch the free layer magnetization. The induced auto-oscillations are observed even at zero applied field, which is believed to be the acoustic mode of the synthetic antiferromagnet. While the phase coherence of the auto-oscillation is of the order of microseconds, the power autocorrelation time is of the order of milliseconds and can be strongly influenced by the free layer dynamics

    Fine-Scale Spatial Organization of Face and Object Selectivity in the Temporal Lobe: Do Functional Magnetic Resonance Imaging, Optical Imaging, and Electrophysiology Agree?

    Get PDF
    The spatial organization of the brain's object and face representations in the temporal lobe is critical for understanding high-level vision and cognition but is poorly understood. Recently, exciting progress has been made using advanced imaging and physiology methods in humans and nonhuman primates, and the combination of such methods may be particularly powerful. Studies applying these methods help us to understand how neuronal activity, optical imaging, and functional magnetic resonance imaging signals are related within the temporal lobe, and to uncover the fine-grained and large-scale spatial organization of object and face representations in the primate brain

    Auto-oscillation threshold and line narrowing in MgO-based spin-torque oscillators

    Full text link
    We present an experimental study of the power spectrum of current-driven magnetization oscillations in MgO tunnel junctions under low bias. We find the existence of narrow spectral lines, down to 8 MHz in width at a frequency of 10.7 GHz, for small applied fields with clear evidence of an auto-oscillation threshold. Micromagnetics simulations indicate that the excited mode corresponds to an edge mode of the synthetic antiferromagnet

    Dynamic masses for the close PG1159 binary SDSSJ212531.92-010745.9

    Full text link
    SDSSJ212531.92-010745.9 is the first known PG1159 star in a close binary with a late main sequence companion allowing a dynamical mass determination. The system shows flux variations with a peak-to-peak amplitude of about 0.7 mag and a period of about 6.96h. In August 2007, 13 spectra of SDSSJ212531.92-010745.9 covering the full orbital phase range were taken at the TWIN 3.5m telescope at the Calar Alto Observatory (Alm\'{e}ria, Spain). These confirm the typical PG1159 features seen in the SDSS discovery spectrum, together with the Balmer series of hydrogen in emission (plus other emission lines), interpreted as signature of the companion's irradiated side. A radial velocity curve was obtained for both components. Using co-added radial-velocity-corrected spectra, the spectral analysis of the PG1159 star is being refined. The system's lightcurve, obtained during three seasons of photometry with the G\"ottingen 50cm and T\"ubingen 80cm telescopes, was fitted with both the NIGHTFALL and PHOEBE binary simulation programs. An accurate mass determination of the PG1159 component from the radial velocity measurements requires to first derive the inclination, which requires light curve modelling and yields further constraints on radii, effective temperature and separation of the system's components. From the analysis of all data available so far, we present the possible mass range for the PG1159 component of SDSSJ212531.92-010745.9.Comment: 8 pages, in "White dwarfs", proceedings of the 16th European White Dwarf Workshop, eds. E. Garcia-Berro, M. Hernanz, J. Isern, S. Torres, to be published in J. Phys.: Conf. Se

    Transverse component of the magnetic field in the solar photosphere observed by Sunrise

    Full text link
    We present the first observations of the transverse component of photospheric magnetic field acquired by the imaging magnetograph Sunrise/IMaX. Using an automated detection method, we obtain statistical properties of 4536 features with significant linear polarization signal. Their rate of occurrence is 1-2 orders of magnitude larger than values reported by previous studies. We show that these features have no characteristic size or lifetime. They appear preferentially at granule boundaries with most of them being caught in downflow lanes at some point in their evolution. Only a small percentage are entirely and constantly embedded in upflows (16%) or downflows (8%).Comment: Accepted for the Sunrise Special Issue of ApJ

    On the Influence of low-power laser source on the evaporation of single droplets: experimental and numerical approaches

    Get PDF
    This work investigates the influence of laser power on an evaporating single droplet made from an H2O and NaCl mixture. Heat and mass transfer of a single droplet with the presence of a low-power laser source (as He-Ne laser) is studied both numerically and experimentally in this article. A new model is presented to simulate water droplet evaporation. The model is robust enough to be applied for various initial concentrations and conditions of the droplet, ambient conditions, and dissolved media properties. Moreover, laser energy is taken into consideration as a source term which is a function of the wave length of the source beam and refractive index of the droplet. Considering the involved parameters, the model is implemented in a MATLAB code and validated using experimental data obtained in this study on top of those already available in the literature. Experimental data were collected for droplets with an initial radius of 500μm at room temperature for three initial concentrations of 3%, 5%, and 10% (by mass) of NaCl in water as well as pure water droplet to provide a comprehensive validation dataset. It is shown that low-power laser source significantly increases the evaporation rate (2.7 to 5.64 for 0% and 10% initial concentration of salt, respectively) which must be taken into consideration while using laser based measurement techniques

    Needle age-related and seasonal photosynthetic capacity variation is negligible for modelling yearly gas exchange of a sparse temperate Scots pine forest

    Get PDF
    In this study, we quantified the predictive accuracy loss involved with omitting photosynthetic capacity variation for a Scots pine (<i>Pinus sylvestris</i> L.) stand in Flanders, Belgium. Over the course of one phenological year, we measured the maximum carboxylation capacity at 25 &deg;C (<i>V</i><sub>m25</sub>), the maximum electron transport capacity at 25 &deg;C (<i>J</i><sub>m25</sub>), and the leaf area index (LAI) of different-aged needle cohorts in the upper and lower canopy. We used these measurements as input for a process-based multi-layer canopy model with the objective to quantify the difference in yearly gross ecosystem productivity (GEP) and canopy transpiration (<i>E</i><sub>can</sub>) simulated under scenarios in which the observed needle age-related and/or seasonal variation of <i>V</i><sub>m25</sub> and <i>J</i><sub>m25</sub> was omitted. We compared simulated GEP with estimations obtained from eddy covariance measurements. Additionally, we measured summer needle N content to investigate the relationship between photosynthetic capacity parameters and needle N content along different needle ages. <br><br> Results show that <i>V</i><sub>m25</sub> and <i>J</i><sub>m25</sub> were, respectively, 27% and 13% higher in current-year than in one-year old needles. A significant seasonality effect was found on <i>V</i><sub>m25</sub>, but not on <i>J</i><sub>m25</sub>. Summer needle N content was considerably lower in current-year than in one-year-old needles. As a result, the correlations between <i>V</i><sub>m25</sub> and needle N content and <i>J</i><sub>m25</sub> and needle N content were negative and non-significant, respectively. Some explanations for these unexpected correlations were brought forward. Yearly GEP was overestimated by the canopy model by &plusmn;15% under all scenarios. The inclusion and omission of the observed needle age-related <i>V</i><sub>m25</sub> and <i>J</i><sub>m25</sub> variation in the model simulations led to statistically significant but ecologically irrelevant differences in simulated yearly GEP and <i>E</i><sub>can</sub>. Omitting seasonal variation did not yield significant simulation differences. Our results indicate that intensive photosynthetic capacity measurements over the full growing season and separate simulation of needle age classes were no prerequisites for accurate simulations of yearly canopy gas exchange. This is true, at least, for the studied stand, which has a very sparse canopy and is exposed to high N deposition and, hence, is not fully representative for temperate Scots pine stands. Nevertheless, we believe well-parameterized process-based canopy models – as applied in this study – are a useful tool to quantify losses of predictive accuracy involved with canopy simplification in modelling
    corecore