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Abstract 

New approaches are proposed to retrieve the wave
function at the object and from this, to retrieve the projected 
structure of the object. The wavefunction is retrieved by 
capturing images at a se1ies of closely spaced focus values 
and to process the whole 3D data. The structure of the object 
is retrieved using a formalism based on electron channelling. 
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Introduction 

We are living in a very exciting period for structural 
research using HREM. Indeed, the possibility to "see" the 
individual atoms of which matter is constituted seems within 
reach. Recent technological improvements permit a resolution 
of about 0.1 nm to be obtained. However, the potential 
power of the technique is still severely limited by the problem 
of quantitative interpretation of the images. For instance, the 
use of computer simulation images requires much a priori 
knowledge which makes HREM very dependent on other 
techniques. The situation can be compared with the early 
days of X-ray diffraction. Recent developments make it 
possible to retrieve the object structure directly from the 
electron micrographs. 

As is well known, the coherent transfer of the wave 
function in the spatial frequency domain is given by a 
multiplication with the phase transfer function (PTF) of the 
electron microscope (Figure 1), which can be considered as 
a complex band filter. At optimum focus, the phase aberra
tion caused by the spherical aberration can be complemented 
by a slight underfocus of the objective lens, causing the phase 
transfer function to be nearly constant over a wide range of 
spatial frequencies. In this regime, the electron microscope 
acts as a phase contrast microscope. If the object is thin, the 
image then directly reveals the phase of the object, which is 
proportional to the projected potential. The resolution of the 
microscope is then called interpretable resolution Ps (struc
tural resolution or point resolution) and is given by the first 
zero of the PTF. Another type of resolution is the informa
tion limit Pi given by the point where the information 
disappears in the noise. This limit is caused by the damping 
of the PTF due to spatial and temporal incoherence. No 
information beyond Pi can be retrieved from the image. 

A promising way of increasing the resolution is by 
restoring the information that is present between Ps and Pi 
and that is still present in the image, albeit with the wrong 
phase. For this purpose, image processing will be indispens
able. In that case, the resolution will be determined by Pi· 
Pi can be improved drastically by using a field emission gun 
(FEG) which reduces the spatial as well as the temporal 
incoherence. With the present technology, an information 
limit Pi= 0.1 nm is within reach. 

The ultimate resolution however is determined by the 
object itself. The intensity of the scattered information 



D. van Dyck and M. Op de Beeck 

(beams) decreases with increasing diffraction angle. This is 
a consequence of the requirement for energy conservation 
(Ewald sphere) and Heisenberg's uncertainty relation [1]. 
Combining these results with the voltage limit for displace
ment damage, it is found that the ultimate resolution will 
always be of the order of the Bohr diameter (0.1 nm). For a 
thorough discussion on the ultimate resolution we refer to [2]. 

Image Interpretation 

The most difficult problem in high resolution electron 
microscopy (HREM) is the problem of the interpretation of 
the images. At present, the only way for a reliable interpreta
tion of the electron micrographs is by comparing them with 
computer simulations calculated for plausible trial-structures. 
However this technique is very tedious, requires a number of 
usually unknown parameters, and can only be applied with 
some success if the number of possible structure models is 
very limited. This makes HREM very much dependent on 
the availability of prior information obtained from other 
techniques. HREM wouid be much more powerful if a direct 
method exists to extract the structural information directly 
from the electron micrographs. 

Direct Methods 

A direct method should consist of three stages. First 
the wavefunction in the image plane has to be reconstructed 
(phase problem). Then the wavefunction at the exit face of 
the object has to be calculated. Then finally from this the 
structure of the object has to be retrieved. 
Phase retrieval [3] 

The phase problem can be solved mainly in two ways, 
by using holography or by using the focus as an external 
controllable parameter. In electron holography, the beam is 
split by an electrostatic biprism into a reference beam and a 
beam that traverses the object. Interference of both beams in 
the image plane then yields fringes, the positions of which 
yield the phase information [4] [5]. In order to assess this 
information one needs a very high resolution camera (CCD), 
a powerful image processor, and a field emission gun to 
provide the necessary spatial coherence. We will present 
another method, in which the focus is used as an extra para
meter. Images are captured at very close focus values so as 
to collect all information in the three-dimensional image 
space. Each image contains linear information and nonlinear 
information. By Fourier transforming all 3D image space, the 
linear information of all images is superimposed onto a 
sphere in reciprocal space, which can be considered as an 
Ewald sphere (Figure 2). By separating this linear infor
mation the phase can be retrieved [3]. This can be proven as 
follows. 

Consider an image plane at a particular focus value in 
which we want to retrieve the phase. For convenience we 
choose the origin of focus in that plane. Writing the wave
function as a Fourier integral, we have 

\j/(R,0) = C + J qi(g) exp(2nig.R) dg (1) 
g,O 
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Figure 1. Phase transfer function for a 300 keV instrument 
(Cs= 0.7 nm, Cc= 1.3 nm). 

qi(g) are the Fourier components. We have separated the 
zeroth order component (constant term). 

The wavefunction at a particular focus value z can be 
obtained from (1) by propagation, i.e. 

\j/(R,z) = C + J qi(g) exp(2nig.R) exp(-i1t11.g2z) dg 
g,O (2) 

3D Fourier transforming the image intensity I \!f(R,z) [ 2 now 
yields, using (2), 

[c[ 2 8(g) + C'qi(g) 8 s 
( 

- /\.2g2) 

+ Cqi'(-g) 8(s + 11.f) 

f d'g qi•(g') qi(g+g') 8{s - ~[<g+g')2-g'2l} 
g'*O 2 

g,g'*O (3) 

where 8 are Dirac functionals and g ands are the conjugates 
of R and z. The first term on the r.h.s. of (3) only yields a 
contribution in the origin. The second and third linear terms 
give a sharply peaked contribution which is located on a 
paraboloid in reciprocal space which can be considered as the 
Ewald sphere in vacuum (Figure 2). The last term gives a 
contribution which is more continuously spread through 
reciprocal space. It is immediately clear that by selecting the 
information concentrated on the paraboloid one directly 
obtains qi(g) and qi '(g) so that from (1) the total wavefunction 
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Figure 2. Schematical representation of the phase retrieval 
procedure. The paraboloid which contains the linear informa
tion in reciprocal space is also shown. 

at focus O is retrieved. In principle, this can by done by 
taking a nearly continuous series of images at very small 
focus intervals, 3D Fourier transforming and selecting the 
sphere. However, this procedure is rather impractical. Hence 
we proceed as follows. We take a series of images at focus 
values zi,z2 ,z3 ... The focus interval is of the order of 3 nm. 
Each of the images l(R,z.) is then transformed into l(g,z.). 

Finally we calculate the series :E l(g,z) exp( -i11)1.g2z). 
n 

ln this way, the sphere for s > 0 is in a sense pro
jected in the plane, apart from a known weighting factor. We 
can do the same for s < 0. From these data it is easy to 
calculate q>(g). In a sense, all the images are back propagated 
to zero focus, where the linear part of each image superim
poses and increases with respect to the nonlinear pan. 
However, as seen from (3), the integral also gives a contribu
tion to the sphere which may influence the results. This 
contribution can be taken corrected by using (3) in an 
iterative way. Another advantage of this method is that it is 
relatively easy to compensate for the effect of chromatic 
aberration. It is well known that chromatic aberration results 
from a spread in the focus due to instabilities in voltage and 
lens current. Hence the image intensity is convoluted with a 
focal spread function I(R,z) = Io(R,z) * f(z). In reciprocal 
space, the convolution product is a direct product with the 
Fourier transform of f(z) /(g,S) = l 0(g,s) . f(s). If the spread 
function! is known, it is easy to compensate for this effect by 
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dividing by f(s). Since this has to be done only at the sphere, 
blowing up effects are largely reduced. Another advantage of 
the method is that, since the contribution of the noise is more 
homogeneously distributed in space, the selection of the 
sphere automatically increases the signal to noise ratio. 
Structure retrieval [6] 

The final step consists in retrieving the projected 
structure of the object from the wavefunction at the exit face. 
If the object is thin enough to act as a phase object, the phase 
is proportional to the electrostatic potential of the structure, 
projected along the beam direction so that the retrieval is 
straightforward. If the object is thicker, the problem is much 
more complicated. However, if the object is a crystal viewed 
along a zone axis, the incident beam is parallel to the atom 
columns. It can be shown that in such a case, the electrons 
are trapped in the positive electrostatic potential of the atom 
columns, which then act as pipes. This effect is known as 
electron channelling and can be explained as follows. 

If the crystal object is perfectly oriented along a zone 
axis, the electrons are trapped in the positive potential of the 
columns. The columns then, in a sense, act as channels for 
the electrons. If the distance between the columns is not too 
small, a one-to-one correspondence between the wavefunction 
at the exit face and the column structure of the crystal is 
established. Within the columns, the electrons oscillate as a 
function of depth without however leaving the column (Figure 
3). Hence the classical picture of electrons traversing the 
crystal as plane-like waves in the direction of the Bragg 
beams, which historically stems from X-ray diffraction, is in 
fact equivalent but misleading. It is important to note that 
channelling is not a property of a crystal, but occurs even in 
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Figure 3. Schematical representation of the electron 
channelling. 

an isolated column and is not much affected by the neigh
bouring columns, provided the distance is not too close. 

The channelling can best be understood as follows [6] 
[7] [8]. Assuming normal incidence and talcing the z axis 
perpendicular to the specimen foil, the high energy equation 
describing the dynamical electron scattering in real space is 
equivalent to the time-dependent Schrodinger equation 

1J cl<)> _ (R,t) = H <)>(R,t) 
clt 

(4) 

in which the time is replaced by the depth z using t = mz/hk 
and in which the Hamiltonian is given by 

7i2 
H = - _ t-,. - e U(R,t) 

2m 
(5) 

with U(R,t) the electrostatic crystal potential, m and k the 
relativistic electron mass and wavenumber. This can be 
understood by assuming that in the direction of propagation 
(z axis) the high energy electron behaves as a classical 
particle with a constant velocity equal to hk/m. In this way 
the z axis plays the role of a time axis. We will further on 
use t instead of z. 

It is easy to verify that the solution of (4) which obeys 
the boundary condition <)>(R,0) is now given by 

<)>(R,t) = 1 + ~ C. 4>.(R) [exp(-~E.t )- 1] (6) 

with 4>.(R) the bounded eigenstates of the Hamiltonian and E. 
its energy (£. < 0) 

H 4>.(R) = E. 4>.(R) (7) 

In case of a rotationally symmetric situation, which occurs 
when the incident beam is exactly parallel to the single 
column, only symmetrical states can be excited (to be 
compared with s states). If the atoms are not too heavy and 
the accelerating potential is not too high only one bound state 
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appears so that 

(
-iEt ) <)>(R,t) = 1 + C <)>(R) exp -1i- - 1 (8) 

From this it is clear that the electron wavefunction varies 
perfectly periodically with depth, the periodicity being 
determined by E, which is related to the mass of the column. 
From (8) it is clear that <)>(R) represents a kind of impulse 
response function for that particular column. Its Fourier 
transform can then be considered as the maximum scattering 
factor for that column. The scattering factor varies period
ically between zero and this maximum. This effect is known 
as "dynamical extinction". In a sense, the resolution limited 
by the object then also varies periodically with depth. The 
best resolution is obtained for those values for which (8) 
becomes maximal. However, the variation is different for 
different types of columns. 

In case of an assembly of columns, located at posi
tions R;, the total wavefunction is now from (8) 

[
-iEt l (9) <)>(R,t) = 1 + ~ C; <!>;(R-R) exp -

11
-' - 1 

(8) now in principle allows to retrieve the object structure, i.e. 
the type and position of each column, once the wavefunction 
at the exit face is known. Indeed, from (8) 

Re ( <)> (R ,t) - 1 ) _ Et 
- tg -

Im (4>(R,1) - 1) 211 
(10) 

should be constant over the column area. 
From this, the energy E can be calculated, which 

yields a measure for the "weight" of the column. Substitution 
into (8) then yields C <)>(R) from which the form of the 
potential, and hence also the exact column position can be 
obtained. 

Results 

Figure 4 shows the results of the retrieval procedure 
for a crystal of B~NaNb 5O 15 and Figure 5 shows the results 
for a model of amorphous Si. In both cases, images are 
simulated, including noise, which are then used again to 
retrieve the structure (left: image at optimum focus; centre: 
retrieved structure; right: original structure). By comparing 
the retrieved with the original structure, the merits of the 
method can be evaluated. It is clear from these results that 
the position of the projected atoms can be retrieved with an 
accuracy of about 1 A. This is particularly important for 
amorphous structures because thus far, no technique exists to 
obtain reliable structural information of this kind. 

Another interesting point to make is that, within a 
direct method, the concept of resolution becomes completely 
different to the original Rayleigh concept. In fact, if the 
types of the atoms are known, only their positions have to be 
determined and resolution is then reduced to the accuracy 
with which these positions can be obtained. 
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Figure 4. Structure of Ba2NaNb 50 15 as retrieved from simu
lated images. The simulations are performed using the 
transfer function of Fig. 1 adding 10% noise. From left to 
right: image at optimum focus; retrieved phase at object; 
retrieved structure; structure model. 

For instance, in a crystal, the number of projected 
positions to be determined cannot be larger than the number 
of Fourier components (beams) which constitute the image. 
This leads to a critical density of atoms per unit area beyond 
which the atom positions cannot be discriminated. In this 
view, resolution is reduced to a critical distance below which 
atoms cannot be discriminated and above which the positions 
can be determined with an accuracy, which is only limited by 
the accuracy of the recording. 

Instrumentation 

In order to put this method into practice one needs a 
medium voltage high resolution electron microscope, 
equipped with a field emission gun (FEG), high resolution 
CCD camera with a high DQE value, directly coupled to a 
fast image processing system. The microscope should be 
aligned in an automatical way. Recently an European Brite
Euram project has been set up, which is funded by the 
European community and in which the ultimate goal is to 
obtain direct 1 A structural information using holography and 
focus variation. Furthermore, the FEG allows the use of all 
illumination angles whereas the CCD collects all electrons 
either in image space or in diffraction space. In the future it 
would be desirable to equip such an instrument with an 
energy filter above and below the specimen. In this way 
nearly all information that can be obtained with electrons can 
be assessed. 
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Figure 5. Strucn1re of amorphous Si as retrieved from 
simulated images (object thickness 2 nm). The simulations 
are performed using the transfer function of Fig. 1 adding 
10% noise. From left to right: image at optimum focus; 
retrieved phase at object; structure model. 
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Discussion with Reviewers 

P. Rez: What is the range of defocus values that can be used 
in focal series restoration and is it affected by temporal 
coherence? 
- Isn't the suggestion for dividing by the focal spread function 
numerically unstable? 
Authors: The range of defocus values that can be used in 
focal series restoration is mainly determined by the spatial 
coherence. However when using a FEG, this range can be 
extended to several 100 nm. 
- Dividing by the focal spread function is not a deconvolution 
in the strict sense, since it is only carried out at the 
paraboloid. Recent experiments have shown that it is not 
unstable. 

P. Rez: One serious problem with focal series restoration is 
image registration (see E.J. Kirkland (1984). Improved high 
resolution image processing of bright field electron micro
graphs. Ultramicroscopy 15, 151-172). What methods do the 
authors propose to eliminate this problem? 
Authors: With the large and fast memories of modern image 
processors, image registration is not a serious problem. In the 
near future, recording can probably be done directly on 
optical disks. 

P. Rez: Are there problems with the method in large unit cell 
materials, such as complex oxides, when the Fourier Period 
is large and only a small part of the "paraboloid" is sampled? 
Authors: The method can in principle even be used (and has 
already been) for aperiodical objects. However, since the 
information in the oscillating part of the transfer function is 
highly delocalized, a large number of recording pixels (e.g. 
1000 or more) is required. 

P. Rez: Is it still conceivable that nonlinear contributions will 
lie on the paraboloid. Can the authors give an estimate of the 
thickness in either Au or Si (110) or ( 111) projections when 
such nonlinear terms will cause the method to fail? 
Authors: The method seems to work for object thicknesses 
of the order of 10 nm. We do not have an estimate for the 
thickness in Au or Si (110). 

P. Rez: If the authors are correct the problem of inverting 
dynamical diffraction is trivial once the complex wave at the 
exit surface has been recovered, as the positions of the atomic 
columns can be directly determined. Is this really true when 
atomic columns are very close to each other as in semicon
ductors in the (110) projection? How do the authors reconcile 
their views with the displacements of up to 0.3 A found by 
Saxton and Smith (W.O. Saxton, D.J. Smith (1985). The 
determination of atomic positions in high-resolution electron 
micrographs. Ultrarriicroscopy 18, 39-48) in studies using 
image simulations? 
Authors: It is true that the positions of close overlapping 
columns may apparently be displaced. It is our belief that the 
channelling approach may be improved to handle this 
situation, for instance by using perturbation theory. 
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J. Rodenburg: Can you please elaborate on the question of 
ultimate resolution being specimen dependent. I can under
stand this in the case of a thin crystalline material where the 
Ewald sphere may unfortunately pass through a perfect 
minimum in the reciprocal space scattering function of the 
specimen, but surely this is not an absolute limitation? At 
worst one may need to perform several experiments at 
different angles of specimen tilt. 
Authors: The ultimate resolution will indeed be limited by 
the object. The derivation in this paper however is oversim
plified. In practice also inelastic scattering will influence the 
resolution. For a thorough discussion we refer to Ref. [2) 
which we for this purpose have added in proof. 

W. Coene: The advantages of ultra-high resolution 
microscopy are in practice concerned with structure 
information in complex structures (like oxides) or high index 
zone-axis orientations, in which case the projected distance 
between atom columns becomes small, so that neighbouring 
atom columns will "feel each other" while diffracting the 
incident electrons. How will this affect a possible breakdown 
of the channelling concept? How severely is channelling 
affected in the case of more than one important bound state 
in relation (8)? What do the authors think about a fine-tuning 
structure reconstruction step by means of a "maximum
likelihood" iteration scheme for the highly non-linear 
diffraction problem (like in non-linear image reconstruction)? 
Authors: If more than one bound state is present, channelling 
will become much more complicated. However, not only the 
energy £ but the product Et matters, so that for thin objects 
in an exact zone orientation, and a not too high accelerating 
voltage, only one bound state will appear for most types of 
columns. We believe that the maximum likelihood procedure 
will improve the accuracy of the results but we are not sure 
whether the profit will balance the computation efforts. 

W. Coene: The high spatial coherence of the field emission 
gun (FEG) is very essential in reconstruction by electron 
holography. Is the improvement in spatial coherence as 
necessary for reconstruction by focus variation, or can one 
maybe benefit from an intentionally reduced spatial coher
ence? 
Authors: In focus variation the spatial coherence does not 
affect the applicability of the method itself but it affects the 
information limit and hence the ultimate resolution. 

W. Coene: The authors argue in the Introduction that the 
ultimate resolution in HREM is determined by the object 
itself, and that it is limited to about 0.1 nm, which is 
roughly the same value as the one that can now be 
reached technologically using an FEG. Do the authors 
think that this is the final physical limit, or, in other 
words, is the additional possible benefit of energy filters 
in HREM (as suggested in the Results section) severely 
limited by effects of electron diffraction in the 
specimen? 
Authors: We do believe that energy filters can only be used 
to improve the resolution by reducing the noise, if operated 
on the zero loss mode. 
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