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ABSTRACT 

This work investigates the influence of laser power on an evaporating single droplet made from an H2O and 
NaCl mixture. Heat and mass transfer of a single droplet with the presence of a low-power laser source (as 
He-Ne laser) is studied both numerically and experimentally in this article. A new model is presented to 
simulate water droplet evaporation. The model is robust enough to be applied for various initial 
concentrations and conditions of the droplet, ambient conditions, and dissolved media properties. Moreover, 
laser energy is taken into consideration as a source term which is a function of the wave length of the source 
beam and refractive index of the droplet. Considering the involved parameters, the model is implemented in a 
MATLAB code and validated using experimental data obtained in this study on top of those already available 
in the literature. Experimental data were collected for droplets with an initial radius of 500μm at room 
temperature for three initial concentrations of 3%, 5%, and 10% (by mass) of NaCl in water as well as pure 
water droplet to provide a comprehensive validation dataset. It is shown that low-power laser source 
significantly increases the evaporation rate (2.7 to 5.64 for 0% and 10% initial concentration of salt, 
respectively) which must be taken into consideration while using laser based measurement techniques. 
 
Keywords: Saline water; evaporation; laser source; single droplet; heat and mass transfer. 

NOMENCLATURE 

A surface area  T temperature  
cp specific heat  V volume  
Dv vapour diffusion coefficient Greek letters
h heat transfer coefficient  attenuation coefficient  

hD mass transfer coefficient   empirical factor 

Hevap specific enthalpy of evaporation   emissivity 

k thermal conductivity    porosity 

L length   density  
m area coefficient of infinite fine  Subscripts 
m  mass flow rate  0 initial condition  
Mw molar mass  cr crust 
Nu Nusselt number Con conduction 
p pressure  d droplet 
pe perimeter  g gas 
P power  L laser 
r radius  N needle 
Pr Prandtl number s solid 
Re Reynolds number st steel 
S source term  v vapour 
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the evaporation of the wet-core (SL,d) is neglected in 
the fourth stage. 

The following boundary conditions are applied for 
the first and second stage in Eq. (1): 

  v
g d evap d

d

T
0 r 0

r
mT

h T T k H r r
r A

   
     
 



     

(7) 

whererd is the droplet outer radius in the first and 
second stage. The following conditions apply for 
the fourth stage: 

 

wc

cr wc v
cr wc evap int erface

cr

wc cr int erface

cr
g cr cr cr

T
0 r 0
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T T m

k k H r r
r r A

T T r r

T
h T T k r R

r

   
     

  

 

   



 

(8) 

where rinterface is the radius of the interface between 
the wet-core and the crust and rcr is the outer radius 
of the crust. The evaporating liquid diffuses through 
the pores to allow the evaporation. As the latent 
heat is dominant compared to sensible heat (only in 
isothermal evaporation stage and for the wet-core in 
the fourth stage), the energy balance equation 
applied to the first and second stages and the wet-
core in the fourth stage can be simplified to 
(Mezhericher et al., 2007): 

 evap v g dH m h T T A                             (9) 

where Ad in the fourth stage is the area of a sphere 
radius of which is equal to that of the crust 
(constant). Changes in the droplet radius in the first 
two stages and the wet-core radius in the fourth 
stage are determined by solving Eq. (10) 
(Mezhericher et al., 2007).  

 


 vm

dt

dr
r


24

                                
(10) 

To calculate the wet-core radius in the fourth stage, 
the left hand side of Eq. (10) is multiplied by the 
porosity resulting in: 

 2 vmdr
4 r

dt
 


 



                             
(11) 

The vapour mass flow rate from the wet-core in the 
fourth stage is obtained using Eq. (12) as described 
in (Sadafi et al., 2014b): 
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(12) 

where pv is the vapour pressure at the interface of 
the crust and the wet-core and Dv is vapour 
diffusion coefficient. Here, it is assumed that the 

vapour diffuses through a number of Stefan tubes. 
The argument in the logarithmic term shows the 
vapour mass concentration gradient through the 
pore. The multiplier is the density of the vapour 
times the vapour diffusion coefficient and the pore 
cross-sectional area. Besides, β is an empirical 
factor which depends on the structure of the crust. It 
should be mentioned that for simplification in 
calculation of mass flow rate in the fourth stage the 
steady state equation is used. 

To calculate the heat and mass transfer coefficients 
at the gas-liquid interface when gas is forced to 
flow over (and around) the droplet (during the first 
and second stages), the correlations from Ranz and 
Marshall (Ranz and Marshall, 1952) are used: 

1 1
2 3
dNu 2 0.6 Re Pr                             (13) 

1 1
2 3
dSh 2 0.6 Re Sc                                  (14) 

By adding a weighting factor “z” the equations of 
the evaporation and drying (second and fourth) 
stages are blended (Sadafi et al., 2015a).  

A Lagrangian formulation of the flow field is used 
to solve the governing equations for the first and 
second stages. A grid with 64 cells in the radial 
direction is implemented and a fixed time step of 
0.1 sis used for the transient implicit solution. For 
the fourth stage, a uniform grid distribution with 
size of 4μm in the radial direction is implemented 
and an adaptive time step with initial value of 0.05s 
is used to obtain the transient implicit solution. 
Results obtained using shorter (half) time steps and 
spatially-refined grids are found to be within 1% of 
those obtained from the baseline. The obtained 
results from the model without source terms are 
validated in (Sadafi et al., 2014b, 2015a). 

3. EXPERIMENTAL STUDY 

3.1 Experimental Test Rig 

The experimental apparatus as well as the 
processing routines to optically measure droplet 
evaporation are presented in Fig. 4. The test rig was 
installed on an optical table. A 35 mW laser source 
with the wave length of 632.8 nm was used to 
produce the inlet energy source. The laser beam 
diameter was 1.23 mm. The laser beam reached the 
droplet after hitting a 90 degree mirror. The droplet 
was suspended using a syringe with the diameter of 
0.33 mm. A digital camera with a sensor of 1392 × 
1024 pixels was used to monitor the size change of 
the droplet using shadowgraph method. The 
maximum uncertainty of the image processing was 
less than 3.5%. 

3.2 Attenuation Coefficient of the Solution 

To measure the attenuation coefficient of NaCl-
water different solutions with a range of mass 
concentrations of salt were prepared. Then, the 
samples were exposed to a known laser beam. 
Throughout the experiment, the laser attenuation is 
measured using a detector placed behind the 
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Fig. 4. Test rig; low-power laser source, 90o 
mirror, lens, digital camera, and droplet. 

 
Fig. 5. Influence of NaCl concentration on the 

attenuation coefficient of the solution. 

droplet. This allows a direct measurement of the 
attenuation coefficient and its variation as the 
droplet concentration and size evolves. The 
obtained results are shown in Fig. 5. 

3.3 Experimental Results 

To investigate the influence of laser energy on the 
evaporation from an evaporating droplet, different 
NaCl concentrations of 0%, 3%, 5%, and 10% were 
tested in the room temperature. The corresponding 
results are shown in Fig. (6) to Fig. (9), 
respectively. 

Fig. 6. Influence of laser power on evaporation 
rate of a pure water droplet at room 

temperature. 

Fig. 6 shows the volume ratio of a single pure water 
droplet versus time using laser as well as laser free 
evaporation. As shown in this fig, in both cases the 
predicted values and experimental results show a 

good agreement during the whole process. In the 
case of use of laser source, the experimental results 
show a considerable change in evaporation time 
compared to the laser free evaporation which is due 
to the absorbed external energy by the droplet. The 
evaporation time ratio for the pure water is 2.71. 
This ratio is defined as the evaporation time for a 
single droplet without laser divided by the 
evaporation time using a laser beam.  

 
Fig. 7. Influence of laser power on evaporation 

rate of a 3% NaCl-water solution droplet at 
room temperature. 

 
Fig. 7 shows the volume ration of the droplets with 
3% initial concentrations. Sadafi et al. (Sadafi et al., 
2015a) presented a criterion to distinguish between 
the different stages of evaporation based on 
experimental results using d2 law. Using this 
criterion and considering the experimental results 
without laser source, the beginning of the transient 
stage is at 805 s which is in a good agreement with 
the numerical value of 818 s. Also, the end of 
transient stage (start of drying stage) for 
experimental and theoretical results is 1950 s and 
1802 s, respectively.  

 

 
Fig. 8. Influence of laser power on evaporation 

rate of a 5% NaCl-water solution droplet at 
room temperature. 

It is shown in Fig. 7 that using saline water droplet 
increases the time ratio. Here, the initial 
concentration of the saline water is 3% by mass. As 
the initial NaCl concentration increases, the energy 
absorbed by the droplet rises and consequently the 
evaporation rate increases and the drying time is 
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shortened. This change in the evaporation time is 
shown in Figs. 8 and 9. The reason for the increased 
energy absorbed by the droplet is the influence of 
NaCl concentration on the refractive index of the 
droplet which changes the attenuation coefficient of 
NaCl-water solutions (

d  in Eq. (3)).  

According to Fig. 6 to Fig. 9 and Tab. 1, using laser 
power to study the evaporation of a single droplet 
results in a faster evaporation rate compared to laser 
free evaporation. This is because the evaporation 
rate in presence of laser beam highly depends on 
attenuation coefficient of NaCl-water solutions.  

 

 
Fig.9. Influence of laser power on evaporation 
rate of a 10% NaCl-water solution droplet at 

room temperature. 

For example in the case of the 3% droplet, the 
coefficient 

d   increases from 1.28 m-1 to 8.02 m-1 

(at 0 s and 528 s, respectively), leading to an 
increase in absorbed energy from 5.57 10-5 W to 
8.29 10-5 W. 

Table 1 compares the evaporation time ratio for 
pure water droplet, 3%, 5%, and 10% NaCl initial 
concentration. For saline water, this ratio is defined 
as the time of solid particles formation (beginning 
of the third stage) for a single droplet without laser 
divided by this time using a laser beam. 

 
Table 1Evaporation time ratio for different 

initial NaCl concentrations. 

Single droplet 
Initial radius 

(µm) 
Evaporation 
time ratio (-) 

Pure water 627.8 2.73 

3% initial 
concentration 

494.5 2.8 

5% initial 
concentration 

623.5 3.52 

10% initial 
concentration 

516 5.64 

 
As the concentration rises by time, this coefficient 
increase which compensates the lower evaporation 
rate occurring after crust formation (stages three 
and four). Thus, there is a uniform evaporation rate 
while using laser power. 

4. CONCLUSION 

A robust model is presented to simulate the heat and 
mass transfer of a single droplet exposed to low-
power laser source. Laser power is considered as a 
source term, which results in a significant increase 
in the evaporation rate. Experimental results 
obtained in this study, validate the described model. 
It is shown that as initial salt concentration 
increases, the evaporation rate rises (drying time 
decreases). This is due to increase in attenuation 
coefficient of NaCl-water solutions. Therefore, the 
energy absorbed while using low-power laser 
sources in a laser based optic measurement 
technique must be taken into consideration. The 
developed model allows a correction to be 
performed to account for the absorbed energy. 
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