18 research outputs found

    Patient-Specific Pre-Treatment VMAT Plan Verification Using Gamma Passing Rates

    Get PDF
    Continuous gantry motion, continuous beam modulation, and variable dose rate are used in volumetric modulated arc therapy (VMAT) to obtain highly conformal radiation therapy dose distributions. Several errors during daily radiation therapy treatment can be sources of uncertainties in dose delivery. These errors include monitor unit calculation errors and other human mistakes. Due to the uncertainties in the excessively modulated VMAT plan, the intended dose distribution is not delivered perfectly, leading to a mismatch between the measured and planned dose distributions. This necessitates an extensive and effective quality assurance (QA) program for both machine and patient. In this study, VMAT QA plan verification of 62 head and neck (HN) and 19 prostate cases was done using Octavius 4D setup with its associating VeriSoft gamma analysis software. The plans showed a maximum 3D gamma passing rate with 4 mm/3 % gamma acceptance criteria, i.e., 99.7 % for the HN cancer cases and 99.5 % for the prostate cancer cases. Local gamma analysis was also performed for both regions. Furthermore, 2D and volumetric gamma analyses were also carried out. Gamma analysis with respect to different axis was also carried out. It was known that the transversal axis showed    the highest gamma passing rate in both HN and prostate cases, i.e., 99.17 % and 98.3 %, respectively. The transverse axis came to be a better fit for the planned dose distribution

    Reconstructing 3D x-ray CT images of polymer gel dosimeters using the zero-scan method

    Get PDF
    In this study x-ray CT has been used to produce a 3D image of an irradiated PAGAT gel sample, with noise-reduction achieved using the ‘zero-scan’ method. The gel was repeatedly CT scanned and a linear fit to the varying Hounsfield unit of each pixel in the 3D volume was evaluated across the repeated scans, allowing a zero-scan extrapolation of the image to be obtained. To minimise heating of the CT scanner’s x-ray tube, this study used a large slice thickness (1 cm), to provide image slices across the irradiated region of the gel, and a relatively small number of CT scans (63), to extrapolate the zero-scan image. The resulting set of transverse images shows reduced noise compared to images from the initial CT scan of the gel, without being degraded by the additional radiation dose delivered to the gel during the repeated scanning. The full, 3D image of the gel has a low spatial resolution in the longitudinal direction, due to the selected scan parameters. Nonetheless, important features of the dose distribution are apparent in the 3D x-ray CT scan of the gel. The results of this study demonstrate that the zero-scan extrapolation method can be applied to the reconstruction of multiple x-ray CT slices, to provide useful 2D and 3D images of irradiated dosimetry gels

    FORESAIL-1 cubesat mission to measure radiation belt losses and demonstrate de-orbiting

    Get PDF
    Abstract Today, the near-Earth space is facing a paradigm change as the number of new spacecraft is literally sky-rocketing. Increasing numbers of small satellites threaten the sustainable use of space, as without removal, space debris will eventually make certain critical orbits unusable. A central factor affecting small spacecraft health and leading to debris is the radiation environment, which is unpredictable due to an incomplete understanding of the near-Earth radiation environment itself and its variability driven by the solar wind and outer magnetosphere. This paper presents the FORESAIL-1 nanosatellite mission, having two scientific and one technological objectives. The first scientific objective is to measure the energy and flux of energetic particle loss to the atmosphere with a representative energy and pitch angle resolution over a wide range of magnetic local times. To pave the way to novel model - in situ data comparisons, we also show preliminary results on precipitating electron fluxes obtained with the new global hybrid-Vlasov simulation Vlasiator. The second scientific objective of the FORESAIL-1 mission is to measure energetic neutral atoms (ENAs) of solar origin. The solar ENA flux has the potential to contribute importantly to the knowledge of solar eruption energy budget estimations. The technological objective is to demonstrate a satellite de-orbiting technology, and for the first time, make an orbit manoeuvre with a propellantless nanosatellite. FORESAIL-1 will demonstrate the potential for nanosatellites to make important scientific contributions as well as promote the sustainable utilisation of space by using a cost-efficient de-orbiting technology.Peer reviewe

    Improved image quality for x-ray CT imaging of gel dosimeters

    Get PDF
    Purpose: This study provides a simple method for improving precision of x-ray computed tomography (CT) scans of irradiated polymer gel dosimetry. The noise affecting CT scans of irradiated gels has been an impediment to the use of clinical CT scanners for gel dosimetry studies. Method: In this study, it is shown that multiple scans of a single PAGAT gel dosimeter can be used to extrapolate a ‘zero-scan’ image which displays a similar level of precision to an image obtained by averaging multiple CT images, without the compromised dose measurement resulting from the exposure of the gel to radiation from the CT scanner. Results: When extrapolating the zero-scan image, it is shown that exponential and simple linear fits to the relationship between Hounsfield unit and scan number, for each pixel in the image, provides an accurate indication of gel density. Conclusions: It is expected that this work will be utilised in the analysis of three-dimensional gel volumes irradiated using complex radiotherapy treatments
    corecore