79,449 research outputs found
Nitrogen enrichment contributes to positive responses to soil microbial communities in three invasive plant species
Experimental effects of wing location on wing-body pressures at supersonic speeds
An experimental study was performed at supersonic speeds to measure wing and body spanwise pressure distributions on an axisymmetric-body delta wing model on which the wing vertical location on the body was systematically varied from low- to high-mounted positions. In addition, for two of these positions both horizontal and radial wing angular orientations relative to the body were tested, and roll angle effects were investigated for one of the positions. Seven different wing-body configurations and a body-alone configuration were studied. The test was conducted at Mach numbers from 1.70 to 2.86 at angles of attack from about -4 deg to 24 deg. Pressure orifices were located at three longitudinal stations on each wing-body model, and at each station the orifices were located completely around the body, along the lower surface of the right wing (looking upstream), and along the upper surface of the left wing. All pressure coefficient data are tabulated and selected samples are shown graphically to illustrate the effects of the test variables. The effects of angle of attack, roll angle, Mach number, longitudinal station, wing vertical location, wing angular orientation, and wing-body juncture are analyzed. The vertical location of the wing on the body had a very strong effect on the body pressures. For a given angle of attack at a roll angle of 0 deg, the pressures were virtually constant in the spanwise direction across the windward surfaces of the wing-body combination. Pressure-relieving, channeling, and vortex effects were noted in the data
Surface Phonons and Other Localized Excitations
The diatomic linear chain of masses coupled by harmonic springs is a
textboook model for vibrational normal modes (phonons) in crystals. In addition
to propagating acoustic and optic branches, this model is known to support a
``gap mode'' localized at the surface, provided the atom at the surface has
light rather than heavy mass. An elementary argument is given which explains
this mode and provides values for the frequency and localization length. By
reinterpreting this mode in different ways, we obtain the frequency and
localization lengths for three other interesting modes: (1) the surface
vibrational mode of a light mass impurity at the surface of a monatomic chain;
(2) the localized vibrational mode of a stacking fault in a diatomic chain; and
(3) the localized vibrational mode of a light mass impurity in a monatomic
chain.Comment: 5 pages with 4 embedded postscript figures. This paper will appear in
the American Journal of Physic
Atlas and zoogeography of common fishes in the Bering Sea and northeastern Pacific
The geographic and depth frequency distribution of 124 common demersal fish species in the northeastern Pacific were plotted from data on me at the Northwest and Alaska Fisheries Center (NWAFC), National Marine Fisheries Service. The data included catch records of fishes and invertebrates from 24,881 samples taken from the Chukchi Sea, throughout the Bering Sea, Aleutian Basin, Aleutian
Archipelago, and the Gulf of Alaska, and from southeastern Alaska south to southern California. Samples were collected by a number of agencies and institutions over a 30-year period (1953-83), but were primarily from NWAFC demersal
trawls. The distributions of all species with 100 or more occurrences in the data set were plotted by computer.
Distributions plotted from these data were then compared with geographic and depth-range limits given in the literature. These data provide new range extensions
(geographic, depth, or both) for 114 species. Questionable extensions are noted, the depth ranges determined for 95% of occurrences, and depths of most frequent occurrence are recorded.
Ranges of the species were classified zoogeographically, according to life zone, and with regard to the depth zone of greatest occurrence. Because most species examined have broad geographic ranges, they do not provide the best information for testing the validity of proposed zoogeographic province boundaries. Because of the location of greatest sampling effort and methods used in sampling,
most fIShes examined were eastern boreal Pacific, sublittoral-bathyal (outer shelf) species. (PDF file contains 158 pages.
An approach to the multidimensional assessment of food security and environmental sustainability: a vulnerability framework for the Mediterranean region
Poster presented at First International Conference on Global Food Security. Noordwijkerhout (The Netherlands), 29 Sep - 2 Oct 201
Ab initio mass tensor molecular dynamics
Mass tensor molecular dynamics was first introduced by Bennett [J. Comput.
Phys. 19, 267 (1975)] for efficient sampling of phase space through the use of
generalized atomic masses. Here, we show how to apply this method to ab initio
molecular dynamics simulations with minimal computational overhead. Test
calculations on liquid water show a threefold reduction in computational effort
without making the fixed geometry approximation. We also present a simple
recipe for estimating the optimal atomic masses using only the first
derivatives of the potential energy.Comment: 19 pages, 5 figure
An approach to the multidimensional assessment of food security and environmental sustainability: a vulnerability framework for the Mediterranean region
Poster presented at First International Conference on Global Food Security. Noordwijkerhout (The Netherlands), 29 Sep - 2 Oct 201
Interactions of arbuscular mycorrhizal fungi, critical loads of nitrogen deposition, and shifts from native to invasive species in a southern California shrubland
Anthropogenic nitrogen (N) deposition and invasive species are causing declines in global biodiversity, and both factors impact the diversity and functioning of arbuscular mycorrhizal (AM) fungi. Shifts in arbuscular mycorrhizal fungal (AMF) communities can generate feedback to native plants and affect their success, as was observed in California’s coastal sage scrub, which is a Mediterranean-type shrubland threatened by invasive grasses. As vegetation-type conversion from native shrubland to exotic annual grassland increased along a gradient of increasing N deposition, the richness of native plant species and of spore morphotypes decreased. Rapid declines in all plant and fungal values occurred at the critical load (CL) of 10–11 kg N·ha−1·year−1, indicating that AM fungi respond to the same environmental signals as the plants, and can be used to assess CL. Shrub root colonization also decreased along the N gradient, but colonization of the invasive grass was dominated by a fine AMF endophyte that was unresponsive to elevated N. A greenhouse experiment to assess AMF functioning showed that the native shrub Artemisia californica Less. had a negative growth response to an inoculum from high-N but not low-N soils, whereas the invasive grass Bromus rubens L. had a positive response to both inocula. Differential functioning of AM fungi under N deposition may in part explain vegetation-type conversion and the decline of this native shrubland
Liquid crystal director fluctuations and surface anchoring by molecular simulation
We propose a simple and reliable method to measure the liquid crystal surface
anchoring strength by molecular simulation. The method is based on the
measurement of the long-range fluctuation modes of the director in confined
geometry. As an example, molecular simulations of a liquid crystal in slab
geometry between parallel walls with homeotropic anchoring have been carried
out using the Monte Carlo technique. By studying different slab thicknesses, we
are able to calculate separately the position of the elastic boundary
condition, and the extrapolation length
- …
