136 research outputs found

    Investigating human mitochondrial genomes in single cells

    Get PDF
    Mitochondria host multiple copies of their own small circular genome that has been extensively studied to trace the evolution of the modern eukaryotic cell and discover important mutations linked to inherited diseases. Whole genome and exome sequencing have enabled the study of mtDNA in a large number of samples and experimental conditions at single nucleotide resolution, allowing the deciphering of the relationship between inherited mutations and phenotypes and the identification of acquired mtDNA mutations in classical mitochondrial diseases as well as in chronic disorders, ageing and cancer. By applying an ad hoc computational pipeline based on our MToolBox software, we reconstructed mtDNA genomes in single cells using whole genome and exome sequencing data obtained by different amplification methodologies (eWGA, DOP-PCR, MALBAC, MDA) as well as data from single cell Assay for Transposase Accessible Chromatin with high-throughput sequencing (scATAC-seq) in which mtDNA sequences are expected as a byproduct of the technology. We show that assembled mtDNAs, with the exception of those reconstructed by MALBAC and DOP-PCR methods, are quite uniform and suitable for genomic investigations, enabling the study of various biological processes related to cellular heterogeneity such as tumor evolution, neural somatic mosaicism and embryonic development

    Mountain Pygmies of Western New Guinea: A Morphological and Molecular Approach

    Get PDF
    The presence of pygmy or pygmoid groups among New Guinea populations has been the object of scientific interest since the end of the nineteenth century. Morphological and molecular data are used here to study western New Guinea population variability, focusing in particular on two pygmoid groups living in the eastern fringe highlands of Papua: the Una and the Ketengban. Various kinds of anthropometric data are examined, as well as height, weight, and body mass index, to carry out comparisons with nearby ethnic groups living in the highland and lowland regions. The Ketengban data were also compared with other data recorded 20 years before. The results of previous research on the sequencing of the mitochondrial DNA hypervariable segment 1 region and nuclear DNA nonrecombining Y-chromosome polymorphisms are presented. Both morphological and molecular studies involve adult subjects of both genders, representative of the same ethnic groups and/ or geographic regions. The pygmoid groups turn out to be significantly different from all other study groups, due to their small size, as confirmed by analysis of variance, although significant height and weight increments are observed with respect to those previously recorded. However, putative neutral genetic variation estimated from mitochondrial DNA and Y-chromosome markers support a recent shared common history between these pygmoid populations and the other central Papua groups (except for the Dani-Lani). These findings suggest that the short-stature phenotype is an independent secondary adaptation, possibly driven by an iodine-deficient environment, which leaves the potential for further investigations

    RegExpBlasting (REB), a Regular Expression Blasting algorithm based on multiply aligned sequences

    Get PDF
    Background: One of the most frequent uses of bioinformatics tools concerns functional characterization of a newly produced nucleotide sequence (a query sequence) by applying Blast or FASTA against a set of sequences (the subject sequences). However, in some specific contexts, it is useful to compare the query sequence against a cluster such as a MultiAlignment (MA). We present here the RegExpBlasting (REB) algorithm, which compares an unclassified sequence with a dataset of patterns defined by application of Regular Expression rules to a given-as-input MA datasets. The REB algorithm workflow consists in i. the definition of a dataset of multialignments ii. the association of each MA to a pattern, defined by application of regular expression rules; iii. automatic characterization of a submitted biosequence according to the function of the sequences described by the pattern best matching the query sequence. Results: An application of this algorithm is used in the "characterize your sequence" tool available in the PPNEMA resource. PPNEMA is a resource of Ribosomal Cistron sequences from various species, grouped according to nematode genera. It allows the retrieval of plant nematode multialigned sequences or the classification of new nematode rDNA sequences by applying REB. The same algorithm also supports automatic updating of the PPNEMA database. The present paper gives examples of the use of REB within PPNEMA. Conclusion: The use of REB in PPNEMA updating, the PPNEMA "characterize your sequence" option clearly demonstrates the power of the method. Using REB can also rapidly solve any other bioinformatics problem, where the addition of a new sequence to a pre-existing cluster is required. The statistical tests carried out here show the powerful flexibility of the method

    Decreased mitochondrial DNA content drives OXPHOS dysregulation in chromophobe renal cell carcinoma

    No full text
    Chromophobe renal cell carcinoma (chRCC) and renal oncocytoma (RO) are closely related, rare kidney tumors. Mutations in complex I (CI)-encoding genes play an important role in dysfunction of the oxidative phosphorylation (OXPHOS) system in RO but are less frequently observed in chRCC. As such, the relevance of OXPHOS status and role of CI mutations in chRCC remain unknown. To address this issue, we performed proteome and metabolome profiling as well as mitochondrial whole-exome sequencing to detect mitochondrial alterations in chRCC tissue specimens. Multi-omic analysis revealed downregulation of electron transport chain (ETC) components in chRCC that differed from the expression profile in RO. A decrease in mitochondrial (mt)DNA content, rather than CI mutations, was the main cause for reduced OXPHOS in chRCC. There was a negative correlation between protein and transcript levels of nuclear DNA- but not mtDNA-encoded ETC complex subunits in chRCC. In addition, the reactive oxygen species scavenger glutathione (GSH) was upregulated in chRCC due to decreased expression of proteins involved in GSH degradation. These results demonstrate that distinct mechanisms of OXPHOS exist in chRCC and RO and that expression levels of ETC complex subunits can serve as a diagnostic marker for this rare malignancy

    Papillary Renal Cell Carcinomas Rewire Glutathione Metabolism and Are Deficient in Both Anabolic Glucose Synthesis and Oxidative Phosphorylation

    No full text
    Papillary renal cell carcinoma (pRCC) is a malignant kidney cancer with a prevalence of 7–20% of all renal tumors. Proteome and metabolome profiles of 19 pRCC and patient-matched healthy kidney controls were used to elucidate the regulation of metabolic pathways and the underlying molecular mechanisms. Glutathione (GSH), a main reactive oxygen species (ROS) scavenger, was highly increased and can be regarded as a new hallmark in this malignancy. Isotope tracing of pRCC derived cell lines revealed an increased de novo synthesis rate of GSH, based on glutamine consumption. Furthermore, profound downregulation of gluconeogenesis and oxidative phosphorylation was observed at the protein level. In contrast, analysis of the The Cancer Genome Atlas (TCGA) papillary RCC cohort revealed no significant change in transcripts encoding oxidative phosphorylation compared to normal kidney tissue, highlighting the importance of proteomic profiling. The molecular characteristics of pRCC are increased GSH synthesis to cope with ROS stress, deficient anabolic glucose synthesis, and compromised oxidative phosphorylation, which could potentially be exploited in innovative anti-cancer strategies

    The reference human nuclear mitochondrial sequences compilation validated and implemented on the UCSC genome browser

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic nuclear genomes contain fragments of mitochondrial DNA called NumtS (Nuclear mitochondrial Sequences), whose mode and time of insertion, as well as their functional/structural role within the genome are debated issues. Insertion sites match with chromosomal breaks, revealing that micro-deletions usually occurring at non-homologous end joining <it>loci </it>become reduced in presence of NumtS. Some NumtS are involved in recombination events leading to fragment duplication. Moreover, NumtS are polymorphic, a feature that renders them candidates as population markers. Finally, they are a cause of contamination during human mtDNA sequencing, leading to the generation of false heteroplasmies.</p> <p>Results</p> <p>Here we present RHNumtS.2, the most exhaustive human NumtSome catalogue annotating 585 NumtS, 97% of which were here validated in a European individual and in HapMap samples. The NumtS complete dataset and related features have been made available at the UCSC Genome Browser. The produced sequences have been submitted to INSDC databases. The implementation of the RHNumtS.2 tracks within the UCSC Genome Browser has been carried out with the aim to facilitate browsing of the NumtS tracks to be exploited in a wide range of research applications.</p> <p>Conclusions</p> <p>We aimed at providing the scientific community with the most exhaustive overview on the human NumtSome, a resource whose aim is to support several research applications, such as studies concerning human structural variation, diversity, and disease, as well as the detection of false heteroplasmic mtDNA variants. Upon implementation of the NumtS tracks, the application of the BLAT program on the UCSC Genome Browser has now become an additional tool to check for heteroplasmic artefacts, supported by data available through the NumtS tracks.</p

    Homopolymer tract length dependent enrichments in functional regions of 27 eukaryotes and their novel dependence on the organism DNA (G+C)% composition

    Get PDF
    BACKGROUND: DNA homopolymer tracts, poly(dA).poly(dT) and poly(dG).poly(dC), are the simplest of simple sequence repeats. Homopolymer tracts have been systematically examined in the coding, intron and flanking regions of a limited number of eukaryotes. As the number of DNA sequences publicly available increases, the representation (over and under) of homopolymer tracts of different lengths in these regions of different genomes can be compared. RESULTS: We carried out a survey of the extent of homopolymer tract over-representation (enrichment) and over-proportional length distribution (above expected length) primarily in the single gene documents, but including some whole chromosomes of 27 eukaryotics across the (G+C)% composition range from 20 – 60%. A total of 5.2 × 10(7 )bases from 15,560 cleaned (redundancy removed) sequence documents were analyzed. Calculated frequencies of non-overlapping long homopolymer tracts were found over-represented in non-coding sequences of eukaryotes. Long poly(dA).poly(dT) tracts demonstrated an exponential increase with tract length compared to predicted frequencies. A novel negative slope was observed for all eukaryotes between their (G+C)% composition and the threshold length N where poly(dA).poly(dT) tracts exhibited over-representation and a corresponding positive slope was observed for poly(dG).poly(dC) tracts. Tract size thresholds where over-representation of tracts in different eukaryotes began to occur was between 4 – 11 bp depending upon the organism (G+C)% composition. The higher the GC%, the lower the threshold N value was for poly(dA).poly(dT) tracts, meaning that the over-representation happens at relatively lower tract length in more GC-rich surrounding sequence. We also observed a novel relationship between the highest over-representations, as well as lengths of homopolymer tracts in excess of their random occurrence expected maximum lengths. CONCLUSIONS: We discuss how our novel tract over-representation observations can be accounted for by a few models. A likely model for poly(dA).poly(dT) tract over-representation involves the known insertion into genomes of DNA synthesized from retroviral mRNAs containing 3' polyA tails. A proposed model that can account for a number of our observed results, concerns the origin of the isochore nature of eukaryotic genomes via a non-equilibrium GC% dependent mutation rate mechanism. Our data also suggest that tract lengthening via slip strand replication is not governed by a simple thermodynamic loop energy model

    Rebooting the human mitochondrial phylogeny: an automated and scalable methodology with expert knowledge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitochondrial DNA is an ideal source of information to conduct evolutionary and phylogenetic studies due to its extraordinary properties and abundance. Many insights can be gained from these, including but not limited to screening genetic variation to identify potentially deleterious mutations. However, such advances require efficient solutions to very difficult computational problems, a need that is hampered by the very plenty of data that confers strength to the analysis.</p> <p>Results</p> <p>We develop a systematic, automated methodology to overcome these difficulties, building from readily available, public sequence databases to high-quality alignments and phylogenetic trees. Within each stage in an autonomous workflow, outputs are carefully evaluated and outlier detection rules defined to integrate expert knowledge and automated curation, hence avoiding the manual bottleneck found in past approaches to the problem. Using these techniques, we have performed exhaustive updates to the human mitochondrial phylogeny, illustrating the power and computational scalability of our approach, and we have conducted some initial analyses on the resulting phylogenies.</p> <p>Conclusions</p> <p>The problem at hand demands careful definition of inputs and adequate algorithmic treatment for its solutions to be realistic and useful. It is possible to define formal rules to address the former requirement by refining inputs directly and through their combination as outputs, and the latter are also of help to ascertain the performance of chosen algorithms. Rules can exploit known or inferred properties of datasets to simplify inputs through partitioning, therefore cutting computational costs and affording work on rapidly growing, otherwise intractable datasets. Although expert guidance may be necessary to assist the learning process, low-risk results can be fully automated and have proved themselves convenient and valuable.</p

    Evolutionary Analyses of Entire Genomes Do Not Support the Association of mtDNA Mutations with Ras/MAPK Pathway Syndromes

    Get PDF
    BACKGROUND: There are several known autosomal genes responsible for Ras/MAPK pathway syndromes, including Noonan syndrome (NS) and related disorders (such as LEOPARD, neurofibromatosis type 1), although mutations of these genes do not explain all cases. Due to the important role played by the mitochondrion in the energetic metabolism of cardiac muscle, it was recently proposed that variation in the mitochondrial DNA (mtDNA) genome could be a risk factor in the Noonan phenotype and in hypertrophic cardiomyopathy (HCM), which is a common clinical feature in Ras/MAPK pathway syndromes. In order to test these hypotheses, we sequenced entire mtDNA genomes in the largest series of patients suffering from Ras/MAPK pathway syndromes analyzed to date (n = 45), most of them classified as NS patients (n = 42). METHODS/PRINCIPAL FINDINGS: The results indicate that the observed mtDNA lineages were mostly of European ancestry, reproducing in a nutshell the expected haplogroup (hg) patterns of a typical Iberian dataset (including hgs H, T, J, and U). Three new branches of the mtDNA phylogeny (H1j1, U5b1e, and L2a5) are described for the first time, but none of these are likely to be related to NS or Ras/MAPK pathway syndromes when observed under an evolutionary perspective. Patterns of variation in tRNA and protein genes, as well as redundant, private and heteroplasmic variants, in the mtDNA genomes of patients were as expected when compared with the patterns inferred from a worldwide mtDNA phylogeny based on more than 8700 entire genomes. Moreover, most of the mtDNA variants found in patients had already been reported in healthy individuals and constitute common polymorphisms in human population groups. CONCLUSIONS/SIGNIFICANCE: As a whole, the observed mtDNA genome variation in the NS patients was difficult to reconcile with previous findings that indicated a pathogenic role of mtDNA variants in NS

    The RD-Connect Genome-Phenome Analysis Platform: Accelerating diagnosis, research, and gene discovery for rare diseases.

    Get PDF
    Rare disease patients are more likely to receive a rapid molecular diagnosis nowadays thanks to the wide adoption of next-generation sequencing. However, many cases remain undiagnosed even after exome or genome analysis, because the methods used missed the molecular cause in a known gene, or a novel causative gene could not be identified and/or confirmed. To address these challenges, the RD-Connect Genome-Phenome Analysis Platform (GPAP) facilitates the collation, discovery, sharing, and analysis of standardized genome-phenome data within a collaborative environment. Authorized clinicians and researchers submit pseudonymised phenotypic profiles encoded using the Human Phenotype Ontology, and raw genomic data which is processed through a standardized pipeline. After an optional embargo period, the data are shared with other platform users, with the objective that similar cases in the system and queries from peers may help diagnose the case. Additionally, the platform enables bidirectional discovery of similar cases in other databases from the Matchmaker Exchange network. To facilitate genome-phenome analysis and interpretation by clinical researchers, the RD-Connect GPAP provides a powerful user-friendly interface and leverages tens of information sources. As a result, the resource has already helped diagnose hundreds of rare disease patients and discover new disease causing genes
    • 

    corecore