33 research outputs found

    Classical Loop Actions of Gauge Theories

    Full text link
    Since the first attempts to quantize Gauge Theories and Gravity in the loop representation, the problem of the determination of the corresponding classical actions has been raised. Here we propose a general procedure to determine these actions and we explicitly apply it in the case of electromagnetism. Going to the lattice we show that the electromagnetic action in terms of loops is equivalent to the Wilson action, allowing to do Montecarlo calculations in a gauge invariant way. In the continuum these actions need to be regularized and they are the natural candidates to describe the theory in a ``confining phase''.Comment: LaTeX 14 page

    Canonical formulation of N = 2 supergravity in terms of the Ashtekar variable

    Full text link
    We reconstruct the Ashtekar's canonical formulation of N = 2 supergravity (SUGRA) starting from the N = 2 chiral Lagrangian derived by closely following the method employed in the usual SUGRA. In order to get the full graded algebra of the Gauss, U(1) gauge and right-handed supersymmetry (SUSY) constraints, we extend the internal, global O(2) invariance to local one by introducing a cosmological constant to the chiral Lagrangian. The resultant Lagrangian does not contain any auxiliary fields in contrast with the 2-form SUGRA and the SUSY transformation parameters are not constrained at all. We derive the canonical formulation of the N = 2 theory in such a manner as the relation with the usual SUGRA be explicit at least in classical level, and show that the algebra of the Gauss, U(1) gauge and right-handed SUSY constraints form the graded algebra, G^2SU(2)(Osp(2,2)). Furthermore, we introduce the graded variables associated with the G^2SU(2)(Osp(2,2)) algebra and we rewrite the canonical constraints in a simple form in terms of these variables. We quantize the theory in the graded-connection representation and discuss the solutions of quantum constraints.Comment: 19 pages, Latex, corrected some typos and added a referenc

    The Lagrangian Loop Representation of Lattice U(1) Gauge Theory

    Get PDF
    It is showed how the Hamiltonian lattice looploop representationrepresentation can be cast straightforwardly in the Lagrangian formalism. The procedure is general and here we present the simplest case: pure compact QED. This connection has been shaded by the non canonical character of the algebra of the fundamental loop operators. The loops represent tubes of electric flux and can be considered the dual objects to the Nielsen-Olesen strings supported by the Higgs broken phase. The lattice loop classical action corresponding to the Villain form is proportional to the quadratic area of the loop world sheets and thus it is similar to the Nambu string action. This loop action is used in a Monte Carlo simulation and its appealing features are discussed.Comment: 13 pp, UAB-FT-341/9

    Introduction to supersymmetric spin networks

    Get PDF
    In this paper we give a general introduction to supersymmetric spin networks. Its construction has a direct interpretation in context of the representation theory of the superalgebra. In particular we analyze a special kind of spin networks with superalgebra Osp(12n)Osp(1|2n). It turns out that the set of corresponding spin network states forms an orthogonal basis of the Hilbert space \cal L\mit^2(\cal A\mit/\cal G), and this argument holds even in the q-deformed case. The Osp(n2)Osp(n|2) spin networks are also discussed briefly. We expect they could provide useful techniques to quantum supergravity and gauge field theories from the point of non-perturbative view.Comment: 27 pages, 16 eps figures. Based on the talk given at Marcel Grossmann Meeting IX in Rom

    Quantum geometry with intrinsic local causality

    Full text link
    The space of states and operators for a large class of background independent theories of quantum spacetime dynamics is defined. The SU(2) spin networks of quantum general relativity are replaced by labelled compact two-dimensional surfaces. The space of states of the theory is the direct sum of the spaces of invariant tensors of a quantum group G_q over all compact (finite genus) oriented 2-surfaces. The dynamics is background independent and locally causal. The dynamics constructs histories with discrete features of spacetime geometry such as causal structure and multifingered time. For SU(2) the theory satisfies the Bekenstein bound and the holographic hypothesis is recast in this formalism.Comment: Latex 33 pages, 7 Figure, epsfi

    A candidate for a background independent formulation of M theory

    Full text link
    A class of background independent membrane field theories are studied, and several properties are discovered which suggest that they may play a role in a background independent form of M theory. The bulk kinematics of these theories are described in terms of the conformal blocks of an algebra G on all oriented, finite genus, two-surfaces. The bulk dynamics is described in terms of causal histories in which time evolution is specified by giving amplitudes to certain local changes of the states. Holographic observables are defined which live in finite dimensional states spaces associated with boundaries in spacetime. We show here that the natural observables in these boundary state spaces are, when G is chosen to be Spin(D) or a supersymmetric extension of it, generalizations of matrix model coordinates in D dimensions. In certain cases the bulk dynamics can be chosen so the matrix model dynamics is recoverd for the boundary observables. The bosonic and supersymmetric cases in D=3 and D=9 are studied, and it is shown that the latter is, in a certain limit, related to the matrix model formulation of M theory. This correspondence gives rise to a conjecture concerning a background independent form of M theory in terms of which excitations of the background independent membrane field theory that correspond to strings and D0 branes are identified.Comment: Latex 46 pages, 21 figures, new results included which lead to a modification of the statement of the basic conjecture. Presentation improve

    Caracterización de la nutrición mineral en establecimientos ganaderos. [Resumen].

    No full text
    Este trabajo realizado en verano del 2016-17, tuvo como objetivo caracterizar posibles problemas de nutrición mineral en 15 establecimientos.Los establecimientos integraban el proyecto Mejora de la ganadería familiar uruguaya y estaban ubicados en las principales zonas agroecológicas dedicadas a la ganadería. Eran sistemas criadores casi exclusivamente sobre campo natural, con superficies de pastoreo desde 140 a 900 ha
    corecore