1,052 research outputs found

    Documented international enquiry on solid sedimentary fossil fuels; Coal: definitions, classifications, reserves-resources and energy potential

    Get PDF
    This paper deals with all solid sedimentary fossil fuels, i.e. coal, the main one for geological reserves and resources, peat, and oil shales. Definitions of coal ( < 50% ash) and coal seam (thickness and depth limits) are examined in view of an international agreement regarding new concepts for a common reserves and resources evaluation using the same nomenclature. The 50% ash limit, already adopted by UN-ECE for coal definition, allows the creation of a new category—the organic shales (50–75% ash)—comprising energetic materials still valuable for thermal use (coal shales) or to be retorted for oil production (oil shales). Geological relations between coals, oil shales, solid bitumen, liquid hydrocarbons, natural gas, and coalbed methane are also examined together with environmental problems. As a final synthesis of all topics, the paper discusses the problems related with a modern geological classification of all solid sedimentary fuels based on: various rank parameters (moisture content, calorific value, reflectance), maceral composition, and mineral matter content (and washability). Finally, it should be pointed out that the paper is presented as series of problems, some of them old ones, but never resolved until now. In order to facilitate the next generation of coal geologists to resolve these problems on the basis of international agreements, all sections begin with documented introductions for further questions opening an international enquiry. The authors hope that the answers will be abundant enough and pertinent to permit synthetic international solutions, valuable for the new millennium, with the help of interested consulted authorities, international pertinent organisations, and regional experts. D 2002 Elsevier Science B.V. All rights reserved

    Revisiting the Problem of Searching on a Line

    Get PDF
    We revisit the problem of searching for a target at an unknown location on a line when given upper and lower bounds on the distance D that separates the initial position of the searcher from the target. Prior to this work, only asymptotic bounds were known for the optimal competitive ratio achievable by any search strategy in the worst case. We present the first tight bounds on the exact optimal competitive ratio achievable, parameterized in terms of the given bounds on D, along with an optimal search strategy that achieves this competitive ratio. We prove that this optimal strategy is unique. We characterize the conditions under which an optimal strategy can be computed exactly and, when it cannot, we explain how numerical methods can be used efficiently. In addition, we answer several related open questions, including the maximal reach problem, and we discuss how to generalize these results to m rays, for any m >= 2

    Role of Cytolethal Distending Toxin in Altered Stool Form and Bowel Phenotypes in a Rat Model of Post-infectious Irritable Bowel Syndrome.

    Get PDF
    Background/aimsCampylobacter jejuni infection is a leading cause of acute gastroenteritis, which is a trigger for post-infectious irritable bowel syndrome (PI-IBS). Cytolethal distending toxin (CDT) is expressed by enteric pathogens that cause PI-IBS. We used a rat model of PI-IBS to investigate the role of CDT in long-term altered stool form and bowel phenotypes.MethodsAdult Sprague-Dawley rats were gavaged with wildtype C. jejuni (C+), a C. jejunicdtB knockout (CDT-) or saline vehicle (controls). Four months after gavage, stool from 3 consecutive days was assessed for stool form and percent wet weight. Rectal tissue was analyzed for intraepithelial lymphocytes, and small intestinal tissue was stained with anti-c-kit for deep muscular plexus interstitial cells of Cajal (DMP-ICC).ResultsAll 3 groups showed similar colonization and clearance parameters. Average 3-day stool dry weights were similar in all 3 groups, but day-to-day variability in stool form and stool dry weight were significantly different in the C+ group vs both controls (P &lt; 0.01) and the CDT- roup (P &lt; 0.01), but were not different in the CDT- vs controls. Similarly, rectal lymphocytes were significantly higher after C. jejuni (C+) infection vs both controls (P &lt; 0.01) and CDT-exposed rats (P &lt; 0.05). The counts in the latter 2 groups were not significantly different. Finally, c-kit staining revealed that DMP-ICC were reduced only in rats exposed to wildtype C. jejuni.ConclusionsIn this rat model of PI-IBS, CDT appears to play a role in the development of chronic altered bowel patterns, mild chronic rectal inflammation and reduction in DMP-ICC

    Grouping based feature attribution in metacontrast masking

    Get PDF
    The visibility of a target can be strongly suppressed by metacontrast masking. Still, some features of the target can be perceived within the mask. Usually, these rare cases of feature mis-localizations are assumed to reflect errors of the visual system. To the contrary, I will show that feature "mis-localizations" in metacontrast masking follow rules of motion grouping and, hence, should be viewed as part of a systematic feature attribution process

    Deterministic meeting of sniffing agents in the plane

    Full text link
    Two mobile agents, starting at arbitrary, possibly different times from arbitrary locations in the plane, have to meet. Agents are modeled as discs of diameter 1, and meeting occurs when these discs touch. Agents have different labels which are integers from the set of 0 to L-1. Each agent knows L and knows its own label, but not the label of the other agent. Agents are equipped with compasses and have synchronized clocks. They make a series of moves. Each move specifies the direction and the duration of moving. This includes a null move which consists in staying inert for some time, or forever. In a non-null move agents travel at the same constant speed, normalized to 1. We assume that agents have sensors enabling them to estimate the distance from the other agent (defined as the distance between centers of discs), but not the direction towards it. We consider two models of estimation. In both models an agent reads its sensor at the moment of its appearance in the plane and then at the end of each move. This reading (together with the previous ones) determines the decision concerning the next move. In both models the reading of the sensor tells the agent if the other agent is already present. Moreover, in the monotone model, each agent can find out, for any two readings in moments t1 and t2, whether the distance from the other agent at time t1 was smaller, equal or larger than at time t2. In the weaker binary model, each agent can find out, at any reading, whether it is at distance less than \r{ho} or at distance at least \r{ho} from the other agent, for some real \r{ho} > 1 unknown to them. Such distance estimation mechanism can be implemented, e.g., using chemical sensors. Each agent emits some chemical substance (scent), and the sensor of the other agent detects it, i.e., sniffs. The intensity of the scent decreases with the distance.Comment: A preliminary version of this paper appeared in the Proc. 23rd International Colloquium on Structural Information and Communication Complexity (SIROCCO 2016), LNCS 998

    Fast Two-Robot Disk Evacuation with Wireless Communication

    Get PDF
    In the fast evacuation problem, we study the path planning problem for two robots who want to minimize the worst-case evacuation time on the unit disk. The robots are initially placed at the center of the disk. In order to evacuate, they need to reach an unknown point, the exit, on the boundary of the disk. Once one of the robots finds the exit, it will instantaneously notify the other agent, who will make a beeline to it. The problem has been studied for robots with the same speed~\cite{s1}. We study a more general case where one robot has speed 11 and the other has speed s1s \geq 1. We provide optimal evacuation strategies in the case that sc2.752.75s \geq c_{2.75} \approx 2.75 by showing matching upper and lower bounds on the worst-case evacuation time. For 1s<c2.751\leq s < c_{2.75}, we show (non-matching) upper and lower bounds on the evacuation time with a ratio less than 1.221.22. Moreover, we demonstrate that a generalization of the two-robot search strategy from~\cite{s1} is outperformed by our proposed strategies for any sc1.711.71s \geq c_{1.71} \approx 1.71.Comment: 18 pages, 10 figure

    Time-Energy Tradeoffs for Evacuation by Two Robots in the Wireless Model

    Full text link
    Two robots stand at the origin of the infinite line and are tasked with searching collaboratively for an exit at an unknown location on the line. They can travel at maximum speed bb and can change speed or direction at any time. The two robots can communicate with each other at any distance and at any time. The task is completed when the last robot arrives at the exit and evacuates. We study time-energy tradeoffs for the above evacuation problem. The evacuation time is the time it takes the last robot to reach the exit. The energy it takes for a robot to travel a distance xx at speed ss is measured as xs2xs^2. The total and makespan evacuation energies are respectively the sum and maximum of the energy consumption of the two robots while executing the evacuation algorithm. Assuming that the maximum speed is bb, and the evacuation time is at most cdcd, where dd is the distance of the exit from the origin, we study the problem of minimizing the total energy consumption of the robots. We prove that the problem is solvable only for bc3bc \geq 3. For the case bc=3bc=3, we give an optimal algorithm, and give upper bounds on the energy for the case bc>3bc>3. We also consider the problem of minimizing the evacuation time when the available energy is bounded by Δ\Delta. Surprisingly, when Δ\Delta is a constant, independent of the distance dd of the exit from the origin, we prove that evacuation is possible in time O(d3/2logd)O(d^{3/2}\log d), and this is optimal up to a logarithmic factor. When Δ\Delta is linear in dd, we give upper bounds on the evacuation time.Comment: This is the full version of the paper with the same title which will appear in the proceedings of the 26th International Colloquium on Structural Information and Communication Complexity (SIROCCO'19) L'Aquila, Italy during July 1-4, 201
    corecore