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Abstract. We revisit the problem of searching for a target at an un-
known location on a line when given upper and lower bounds on the
distance D that separates the initial position of the searcher from the
target. Prior to this work, only asymptotic bounds were known for the
optimal competitive ratio achievable by any search strategy in the worst
case. We present the first tight bounds on the exact optimal competitive
ratio achievable, parametrized in terms of the given range for D, along
with an optimal search strategy that achieves this competitive ratio. We
prove that this optimal strategy is unique and that it cannot be com-
puted exactly in general. We characterize the conditions under which
an optimal strategy can be computed exactly and, when it cannot, we
explain how numerical methods can be used efficiently. In addition, we
answer several related open questions and we discuss how to generalize
these results to m rays, for any m ≥ 2.

1 Introduction

Search problems are broadly studied within computer science. A fundamental
search problem, which is the focus of this paper, is to specify how a searcher
should move to find an immobile target at an unknown location on a line such
that the total relative distance travelled by the searcher is minimized in the
worst case [3,10,13]. The searcher is required to move continuously on the line,
i.e., discontinuous jumps, such as random access in an array, are not possible.
Thus, a search corresponds to a sequence of alternating left and right displace-
ments by the searcher. This class of geometric search problems was introduced
by Bellman [4] who first formulated the problem of searching for the bound-
ary of a region from an unknown random point within its interior. Since then,
many variants of the line search problem have been studied, including multiple
rays sharing a common endpoint (as opposed to a line, which corresponds to
two rays), multiple targets, multiple searchers, moving targets, and randomized
search strategies (e.g., [1,2,3,5,6,7,8,9,12,13,14]).

For any given search strategy f and any given target location, we consider
the ratio A/D, where A denotes the total length of the search path travelled by a
searcher before reaching the target by applying strategy f , and D corresponds to
the minimum travel distance necessary to reach the target. That is, the searcher
and target initially lie a distance D from each other on a line, but the searcher
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knows neither the value D nor whether the target lies to its left or right. The
competitive ratio of a search strategy f , denoted CR(f), is measured by the
supremum of the ratios achieved over all possible target locations. Observe that
CR(f) is unbounded if D can be assigned any arbitrary real value; specifically,
the searcher must know a lower bound min ≤ D. Thus, it is natural to consider
scenarios where the searcher has additional information about the distance to
the target. In particular, in many instances the searcher can estimate good lower
and upper bounds on D. Given a lower bound D ≥ min, Baeza-Yates et al. [3]
show that any optimal strategy achieves a competitive ratio of 9. They describe
such a strategy, which we call the Power of Two strategy. Furthermore, they
observe that when D is known to the searcher, it suffices to travel a distance of
3D in the worst case, achieving a competitive ratio of 3.

We represent a search strategy by a function f : N → R+. Given such a
function, a searcher travels a distance of f(0) in one direction from the origin
(say, to the right), returns to the origin, travels a distance of f(1) in the opposite
direction (to the left), returns to the origin, and so on, until reaching the target.
We refer to f(i) as the distance the searcher travels from the origin during
the ith iteration. The corresponding function for the Power of Two strategy
of Baeza-Yates et al. is f(i) = 2i min. Showing that every optimal strategy
achieves a competitive ratio of exactly 9 relies on the fact that no upper bound
on D is specified [3]. Therefore, it is natural to ask whether a search strategy
can achieve a better competitive ratio when provided lower and upper bounds
min ≤ D ≤ max.

Given R, the maximal reach problem examined by Hipke et al. [10] is to
identify the largest bound max such that there exists a search strategy that
finds any target within distance D ≤ max with competitive ratio at most R.
López-Ortiz and Schuierer [13] study the maximal reach problem on m rays,
from which they deduce that the competitive ratio CR(gopt) of any optimal
strategy gopt is at least 1 + 2mm(m− 1)1−m−O(log−2 ρ), where ρ = max /min.
When m = 2, the corresponding lower bound becomes 9 − O(log−2 ρ). They
also provide a general strategy that achieves this asymptotic behaviour for a
general m, given by f(i) = (

√
1 + i/m)(m/(m− 1))i min. Again, for m = 2 this

is f(i) = (
√

1 + i/2)2i min. Surprisingly, this general strategy is independent of
ρ. In essence, it ignores any upper bound on D, regardless of how tight it is.
Thus, we examine whether there exists a better search strategy that depends on
ρ, thereby using both the upper and lower bounds on D. Furthermore, previous
lower bounds on CR(gopt) have an asymptotic dependence on ρ applying only
to large values of ρ, corresponding to having only coarse bounds on D. Can we
express tight bounds on CR(gopt) in terms of ρ?

Let gopt(i) = ai min denote an optimal strategy. Since D ≤ max, then there
must be an n such that an ≥ ρ, i.e., n is the number of iterations necessary
to reach the target, so that gopt(n) ≥ max. López-Ortiz and Schuierer [13] pro-
vide an algorithm to compute the maximal reach for a given competitive ratio
together with a strategy corresponding to this maximal reach. They state that
the value n and the sequence {ai}n−1i=0 for gopt can be computed using binary



search, which increases the running time proportionally to log ρ. Can we find a
faster algorithm for computing gopt? Since in general, the values a0, . . . , an−1 are
roots of a polynomial equation of unbounded degree (see Theorem 1), a binary
search is equivalent to the bisection method for solving polynomial equations.
However, the bisection method is a slowly converging numerical method. Can
the computational efficiency be improved? Moreover, given ε, can we bound the
number of steps necessary for a root-finding algorithm to identify a solution
within tolerance ε of the exact value?

1.1 Overview of Results

We address all of the questions raised above. We characterize gopt by computing
the sequence {ai}n−1i=0 for the optimal strategy. We do this by computing the
number of iterations n needed to find the target and by defining a family of
polynomials p0, . . . , pn, where pi has degree i+1. We can compute n in O(1) time
since we prove that n ∈ {blog2 ρc − 1, blog2 ρc}, where ρ = max /min. We then
show that a0 is the largest real solution to the polynomial equation pn(x) = ρ.
Each of the remaining elements in the sequence {ai} can be computed in O(1)
time since we prove that a1 = a0(a0− 1) and ai = a0(ai−1−ai−2) for 2 ≤ i < n.
This also shows that the optimal strategy is unique. Moreover, as we show in
Proposition 1, when no upper bound is known there exist infinitely many optimal
strategies for any m ≥ 2.

We give an exact characterization of gopt and show that CR(gopt) = 2a0 + 1.
This allows us to establish the following bounds on the competitive ratio of an
optimal strategy in terms of ρ:

8 cos2
(

π

dlog2 ρe+ 1

)
+ 1 ≤ CR(gopt) ≤ 8 cos2

(
π

blog2 ρc+ 4

)
+ 1 .

López-Ortiz and Schuierer [13] show that CR(gopt)→ 9 as ρ→∞. We show
that gopt → g∞ as ρ→∞, where g∞(i) = (2i+ 4)2i min has a competitive ratio
of 9. We thereby obtain an alternate proof of the result of Baeza-Yates et al. [3].
The strategy g∞ is a member of the infinite family of optimal strategies in the
unbounded case which we describe in Proposition 1.

We assume the Real RAM model of computation, including kth roots, log-
arithms, exponentiation, and trigonometric functions [15]. The computation of
each term ai in the sequence defining gopt involves computing the largest real
root of a polynomial equation of degree n + 1. We prove that n + 1 ≤ 4 if and
only if ρ ≤ 32 cos5(π/7) ≈ 18.99761. In this case the root can be expressed
exactly using only the operations +, −, ×, ÷,

√
· and 3

√
·. This implies that if

max ≤ 32 cos5(π/7) min, then gopt can be computed exactly in O(1) time (O(1)
time per ai for 0 ≤ i ≤ n < 4). In general, when n + 1 ≥ 5, Galois theory
implies that the equation pn(x) = ρ cannot be solved by radicals. Since the
corresponding polynomials have unbounded degree, we are required to consider
approximate solutions when ρ > 32 cos5(π/7). Therefore, we explain how to find
a solution g∗opt, such that CR(g∗opt) ≤ CR(gopt) + ε for a given tolerance ε.



If n ≥ 7ε−1/3− 4, we give an explicit formula for a0. Hence, an ε-approxima-
tion can be computed in O(n) = O(log ρ) time (O(1) time per ai for 0 ≤ i ≤ n).
Otherwise, if 32 cos5(π/7) < n < 7ε−1/3 − 4, we show that a0 lies in an interval
of length at most 73 (n+4)−3. Moreover, we prove that the polynomial is strictly
increasing on this interval. Hence, usual root-finding algorithms work well. Given
a0, the remaining elements of the sequence {a1, . . . , an−1} can be computed in
O(n) time (O(1) time per ai for 1 ≤ i ≤ n). Finally, we explain how our technique
can be generalized to m rays.

2 Searching on a Bounded Line

López-Ortiz and Schuierer [13] showed that there always exists an optimal strat-
egy that is periodic and monotone. That is, the strategy alternates searching left
and right between the two rays and the values in the sequence {ai} are increas-
ing: i > j implies ai > aj . Thus, it suffices to consider search strategies that are
periodic and monotone. Our goal is to identify a strategy f that minimizes

CR(f) = sup
D∈[min,max]

φ(f,D)/D, where φ(f,D) = 2
∑f−1(D)

i=0
f(i) +D

denotes the cost incurred by f to find a target at distance D in the worst case
and f−1(D) is the smallest integer j such that f(j) ≥ D.

A simple preliminary strategy is to set g0(i) = max. The corresponding
competitive ratio is

CR(g0) = sup
D∈[min,max]

(2 max +D)/D = 2ρ+ 1 .

Observe that g0 is optimal when ρ = 1, i.e., when D is known. A second strategy
g1 corresponds to cutting [min,max] once at a point a0 min < ρmin = max.
Namely, we search a sequence of two intervals, [min, a0 min] and (a0 min, ρmin] =
(a0 min,max], from which we define

g1(i) =

{
a0 min if 0 ≤ i < 1,

ρmin if i ≥ 1.

Therefore, a0 needs to be chosen such that CR(g1) is minimized. We have

sup
D∈[min,a0 min]

φ(g1, D)/D = 2a0 +1 and sup
D∈(a0 min,ρmin]

φ(g1, D)/D = 3+2
ρ

a0
.

Hence, to minimize CR(g1), we must select a0, where 1 ≤ a0 ≤ ρ, such that
2a0+1 = 3+2ρ/a0. Therefore, a0 = (1+

√
1 + 4ρ)/2 and CR(g1) = 2+

√
1 + 4ρ.

We have that CR(g0) ≤ CR(g1) if and only if 1 ≤ ρ ≤ 2.
In general, we can partition the interval [min, ρmin] into n + 1 subintervals

whose endpoints correspond to the sequence min, a0 min, . . . , an−1 min, ρmin,
from which we define

gn(i) =

{
ai min if 0 ≤ i < n,

ρmin if i ≥ n.



Therefore, we must select a0, . . . , an−1, where 1 ≤ a0 ≤ a1 ≤ . . . ≤ an−1 ≤ ρ,
such that CR(gn) is minimized. We have

sup
D∈[min,a0 min]

φ(gn, D)/D = 2a0 + 1 ,

sup
D∈(ai min,ai+1 min]

φ(gn, D)/D = 1 + 2
∑i+1

k=0
ak/ai (1 ≤ i ≤ n− 2),

sup
D∈(an−1 min,ρmin]

φ(gn, D)/D = 1 + 2
∑n−1

k=0
ak/an−1 + 2ρ/an−1 .

Hence, the values ai are solutions to the following system of equations:∑i+1

k=0
ak = a0ai (0 ≤ i ≤ n− 2), and

∑n−1

k=0
ak + ρ = a0an−1. (1)

We prove in Theorem 1 that the solution to this system of equations can be
obtained using the following family of polynomials:

p0(x) = x ,

p1(x) = x(x− 1) ,

pi(x) = x (pi−1(x)− pi−2(x)) (i ≥ 2). (2)

We apply (2) without explicitly referring to it when we manipulate the polyno-
mials pi. Let αi denote the largest real root of pi for each i.

Theorem 1. For all n ∈ N, the values ai (0 ≤ i < n) that define gn satisfy the
following properties:

1. ai = pi(a0),
2. a0 is the unique solution to the equation pn(x) = ρ such that a0 > αn, and
3. CR(gn) = 2a0 + 1.

To prove Theorem 1, we use the following two formulas:

pn+1(x) = xpn(x)−
∑n

i=0
pi(x), and (3)

pn(x) = xb(n+1)/2c
∏b(n+2)/2c

k=1

(
x− 4 cos2(kπ/(n+ 2))

)
. (4)

Equation (3) can be proved by induction on n. Equation (4) is a direct conse-
quence of Corollary 10 in [11] since the pn’s are generalized Fibonacci polynomials
(refer to [11]). We can deduce many properties of the pn’s from (4) since it pro-
vides an exact expression for all the roots of the pn’s. For instance, we have the
formula αn = 4 cos2(π/(n+ 2)).

Proof. 1. We can prove this theorem by induction on i, using (1) and (3).

2. From the discussion preceding Theorem 1 we know that a0 satisfies
∑n−1
k=0 ak

+ ρ = a0an−1. Therefore,

ρ = a0an−1 −
∑n−1

k=0
ak

= a0pn−1(a0)−
∑n−1

k=0
pk(a0) by Theorem 1-1,

= pn(a0) by (3).



Suppose a0 < αn. Then, by (4), there exists an i ∈ N such that 0 ≤ i < n
and pi(a0) < 0. Hence, ai = pi(a0) < 0 by Theorem 1-1. This is impossible since
all the ai’s are such that 1 ≤ ai ≤ ρ. Therefore, a0 ≥ αn. Moreover, a0 6= αn
since pn(a0) = ρ ≥ 1, whereas pn(αn) = 0 by the definition of αn. Finally, this
solution is unique since αn is the biggest real root.
3. This follows directly from the discussion preceding Theorem 1. ut

From Theorem 1, the strategy gn is uniquely defined for each n. However,
this still leaves an infinite number of possibilities for the optimal strategy (one
for each n). We aim to find, for a given ρ, what value of n leads to the optimal
strategy. Theorem 2 gives a criterion for the optimal n in terms of ρ together
with a formula that enables to compute this optimal n in O(1) time.

Theorem 2.

1. For a given ρ, if n ∈ N is such that

pn(αn+1) ≤ ρ < pn(αn+2) , (5)

then gn is the optimal strategy and αn+1 ≤ a0 < αn+2.
2. For all n ∈ N,

2n ≤ pn(αn+1) ≤ ρ < pn(αn+2) ≤ 2n+2 . (6)

Notice that the criterion in Theorem 2-1 covers all possible values of ρ since
p0(α1) = 1 and pn(αn+2) = pn+1(αn+2) by the definition of the αn’s.

Proof. 1. Consider the strategy gn. By Theorem 1-2 and since pn(αn+1) ≤ ρ <
pn(αn+2), we have αn+1 ≤ a0 < αn+2.

We first prove that gn is better than gm for all m < n. Suppose that there
exists anm < n such that gm is better than gn for a contradiction. By Theorem 1-
2, there exists an a′0 such that a′0 > αm and gm(a′0) = ρ. Moreover, since gm
is better than gn by the hypothesis, then 2a′0 + 1 < 2a0 + 1 by Theorem 1-3.
Therefore,

αm < a′0 < a0 . (7)

Also, since m < n, then m+2 ≤ n+1. Thus, since the αn’s are strictly increasing
with respect to n, a0 ≥ αn+1 ≥ αi for all m+ 2 ≤ i ≤ n+ 1. Hence, we find

pm(a0) ≤ pm+1(a0) ≤ pm+2(a0) ≤ . . . ≤ pn−1(a0) ≤ pn(a0) . (8)

But then,

ρ = pm(a′0)

< pm(a0) by (7) and since pm is increasing on [αm,∞),

≤ pn(a0) by (8),

= ρ ,



which is a contradiction. Consequently, gn is better than gm for all m < n.
We now prove that gn is better than gn′ for all n′ > n. Suppose that there

exists an n′ > n such that gn′ is better than gn for a contradiction. By Theorem 1-
2, there exists an a′0 such that a′0 > αn′ and gn′(a

′
0) = ρ. Moreover, since gn′

is better than gn by the hypothesis, then 2a′0 + 1 < 2a0 + 1 by Theorem 1-3.
Therefore,

αn < αn′ < a′0 < a0 < αn+2 (9)

since the αn’s are strictly increasing with respect to n, from which n′ = n + 1.
But then,

ρ = pn′(a
′
0)

= pn+1(a′0)

< pn(a′0) by (9) and since αn < αn+1 < αn+2,

< pn(a0) by (9) and since pn is increasing on [αn,∞),

= ρ ,

which is a contradiction. Consequently, gn is better than gn′ for all n′ > n.
2. By standard calculus, we can prove that

2 cosn+1(π/(n+ 3)) ≥ 1 (10)

for all n ≥ 0. Therefore,

2n ≤ 2n 2 cosn+1(π/(n+ 3)) by (10),

= α
(n+1)/2
n+1 by (4),

= pn(αn+1) this can be proved by induction on n,

≤ ρ by (5),

< pn(αn+2) by (5),

= α
(n+2)/2
n+2 this can be proved by induction on n,

= 2n+2 cosn+2(π/(n+ 4)) by (4),

≤ 2n+2 since 0 < cos(π/(n+ 4)) < 1. ut

From (5), there is only one possible optimal value for n. By (6), it suffices
to examine two values to find the optimal n, namely blog2 ρc − 1 and blog2 ρc.
To compute the optimal n, let n = blog2 ρc and let γ = 2 cos(π/(n + 3)). If
n+1 ≤ logγ ρ, then n is optimal. Otherwise, take n = blog2 ρc−1. By Theorem 2,
this gives us the optimal n in O(1) time.

Now that we know the optimal n, we need to compute ai for each 0 ≤ i < n.
Suppose that we know a0. By (2) and Theorem 1-1, a1 = p1(a0) = a0(a0−1) and
ai = a0(pi−1(a0) − pi−2(a0)) = a0(ai−1 − ai−2) for 2 ≤ i < n. Therefore, given
a0, each ai can be computed in O(1) time for 1 ≤ i < n. It remains to show how
to compute a0 efficiently. Since gn is defined by n values, Ω(n) = Ω(log ρ) time



is necessary to compute gn. Hence, if we can compute a0 in O(1) time, then our
algorithm is optimal.

By Theorem 2, for a given n, we need to solve a polynomial equation of
degree n + 1 to find the value of a0. By Galois theory, this cannot be done
by radicals if n + 1 > 4. Moreover, the degree of the pn’s is unbounded, so
a0 cannot be computed exactly in general. Theorem 3 explains how and why
numerical methods can be used efficiently to address this issue.

Theorem 3. Take ρ and n such that gn is optimal for ρ.

1. Let a∗0 ∈ R be such that αn+1 ≤ a0 < a∗0 ≤ αn+2 and define g∗n by

g∗n(i) =


a∗0 min if i = 0,

pi(a
∗
0) min if 1 ≤ i < n,

ρmin if i ≥ n.

Then |CR(gn)− CR(g∗n)| ≤ 73 (n+ 4)−3.
2. The polynomial pn is strictly increasing on [αn+1, αn+2) and |αn+2−αn+1| ≤

73 (n+ 4)−3/2.

Proof. 1. Let a∗i = pi(a
∗
0). We first prove that CR(g∗n) = 2a∗0 +1. By Theorems 1

and 2-1, there is a ρ∗ ∈ R such that pn(αn+1) ≤ ρ < ρ∗ ≤ pn(αn+2), pn(a∗0) = ρ∗

and g∗n is optimal for ρ∗. By Theorem 1 and the discussion preceding it, we have

sup
D∈[min,a∗0 min]

1

D
φ(g∗n, D) = 2a∗0 + 1 ,

sup
D∈(a∗i min,a∗i+1 min]

1

D
φ(g∗n, D) = 1 + 2

∑i+1

k=0

a∗k
a∗i

(0 ≤ i ≤ n− 2)

= 2a∗0 + 1 (0 ≤ i ≤ n− 2) ,

sup
D∈(a∗n−1 min,ρmin]

1

D
φ(g∗n, D) = 1 + 2

∑n−1

k=0

a∗k
a∗n−1

+ 2
ρ

a∗n−1

< 1 + 2
∑n−1

k=0

a∗k
a∗n−1

+ 2
ρ∗

a∗n−1

= 2a∗0 + 1 .

This establishes that CR(g∗n) = 2a∗0 + 1. Therefore,

|CR(gn)− CR(g∗n)|
= |(2a0 + 1)− (2a∗0 + 1)| by Theorem 1-3 and since CR(g∗n) = 2a∗0 + 1,

= 2(a∗0 − a0)

≤ 2(αn+2 − αn+1) by the hypothesis and Theorem 2-1,

= 8
(
cos2(π/(n+ 4))− cos2(π/(n+ 3))

)
by (4).

≤ 73 (n+ 4)−3 by elementary calculus.



2. This is a direct consequence of (4) and Theorem 3-1. ut
We now explain how to compute a0. We know the value of the optimal n.

From (4) and Theorem 2-1, n satisfies n+1 ≤ 4 if and only if ρ ≤ 32 cos5(π/7) ≈
18.99761. In this case, pn(x) = ρ is a polynomial equation of degree at most 4.
Hence, by Theorem 1-2 and elementary algebra, a0 can be computed exactly
and in O(1) time. Otherwise, let ε > 0 be a given tolerance. We explain how to
find a solution g∗opt, such that CR(g∗opt) ≤ CR(gopt) + ε.

If n ≥ 7ε−1/3−4, then by Theorem 3, it suffices to take a0 = αn+2 to compute
an ε-approximation of the optimal strategy. But αn+2 = 4 cos2(π/(n + 4)) by
(4). Hence, a0 can be computed in O(1) time and thus, an ε-approximation of
the optimal strategy can be computed in Θ(n) = Θ(log ρ) time. Otherwise, if
4 ≤ n < 7ε−1/3 − 4, then we have to use numerical methods to find the value of
a0. By Theorem 2-1, we need to solve pn(x) = ρ for x ∈ [αn+1, αn+2). However,
by Theorem 3, |αn+2 − αn+1| < 73(n + 4)−3/2 and pn is strictly increasing on
this interval. Hence, usual root-finding algorithms behave well on this problem.

Hence, if n < 4 or n ≥ 7ε−1/3 − 4, then our algorithm is optimal. When
4 ≤ n < 7ε−1/3 − 4, then our algorithm’s computation time is as fast as the
fastest root-finding algorithm.

It remains to provide bounds on CR(gn) for an optimal n; we present exact
bounds in Theorem 4.

Theorem 4.

1. The strategy g0 is optimal if and only if 1 ≤ ρ < 2. In this case, CR(g0) =
2ρ+ 1. Otherwise, if gn is optimal (n ≥ 1), then

8 cos2
(

π

dlog2 ρe+ 1

)
+ 1 ≤ CR(gn) ≤ 8 cos2

(
π

blog2 ρc+ 4

)
+ 1 . (11)

2. When max → ∞, the best strategy tends toward g∞(i) = (2i + 4)2i min
(i ≥ 0) and CR(g∞) = 9.

Proof. 1. This is a direct consequence of (6), (4), and Theorems 1 and 2-1.
2. Let gn be the optimal strategy for ρ. When max → ∞, then ρ → ∞ and
then, n → ∞ by (6). Hence, by Theorem 2-1 and (4), 4 = limn→∞ αn+1 ≤
limn→∞ a0 ≤ limn→∞ αn+2 = 4. Thus, when max → ∞, ai = pi(a0) = pi(4) =
(2i+ 4)2i by Theorem 1-1 and (4). Hence, gn → g∞. ut

The competitive cost of the optimal strategy is 2a0 + 1 by Theorem 1-3.
Theorem 4-1 gives nearly tight bounds on 2a0 + 1. Notice that when ρ = 1, i.e.,
when D is known, then 2a0 +1 = 3 which corresponds to the optimal strategy in
this case. From the Taylor series expansion of cos2(·) and Theorem 4-1, we have
CR(gn) = 9−O(1/ log2 ρ) for an optimal n. This is consistent with López-Ortiz
and Schuierer’ result (see [13]), although our result (11) is exact.

Letting ρ → ∞ corresponds to not knowing any upper bound on D. Thus,
Theorem 4-2 provides an alternate proof to the competitive ratio of 9 shown by
Baeza-Yates et al. [3]. From Theorems 2 and 4, the optimal solution for a given
ρ is unique. This optimal solution tends towards g∞, suggesting that g∞ is the



canonical optimal strategy when no upper bound is given (rather than the power
of two strategy).

3 Searching on m Bounded Concurrent Rays

For m ≥ 2, when no upper bound is known, Baeza-Yates et al. [3] proved that
the optimal strategy has a competitive cost of 1+2mm/(m−1)m−1. There exist
infinitely many strategies that achieve this optimal cost.

Proposition 1. All the strategies in the following family are optimal: fa,b(i) =

(ai + b) (m/(m− 1))
i
min, where 0 ≤ a ≤ b/m and (m/(m− 1))

2−m ≤ b ≤
(m/(m− 1))

2
.

Notice that for m = 2, when a and b are respectively equal to their smallest
allowed value, then fa,b corresponds to the power of two strategy of Baeza-Yates
et al. (refer to [3]). Moreover, when a and b are respectively equal to their biggest
allowed value, then fa,b = g∞ (refer to Theorem 4-2). This proposition can be
proved by a careful computation of CR(fa,b). For a general m, we let g∞ be the
strategy such that a and b are respectively equal to their biggest allowed value.

When we are given an upper bound max ≥ D, the solution presented in
Section 2 partially applies to the problem of searching on m concurrent bounded
rays. In this setting, we start at the crossroads and we know that the target is on
one of the m rays at a distance D such that min ≤ D ≤ max. Given a strategy
f(i), we walk a distance of f(i) on the (i mod m)-th ray and go back to the
crossroads. We repeat for all i ≥ 0 until we find the target. As in the case where
m = 2, we can suppose that is the solution is periodic and monotone (refer to
Section 2 or see Lemmas 2.1 and 2.2 in [13]).

Unfortunately, we have not managed to push the analysis as far as in the
case where m = 2 because the expressions in the general case do not simplify as
easily. We get the following system of equations by applying similar techniques
as in Section 2 ∑i+m−1

k=0
ak = ai

∑m−2

k=0
ak (0 ≤ i ≤ n−m),∑n−1

k=0
ak + (i− (n−m))ρ = ai

∑m−2

k=0
ak (n−m+ 1 ≤ i ≤ n− 1),

for gn, where

gn(i) =

{
ai min if 0 ≤ i < n,

ρmin if i ≥ n.

We prove in Theorem 5 that the solution to this system of equations can be
obtained using the following family of polynomials in m − 1 variables, where
x = (x0, x1, ..., xm−2) and |x| = x0 + x1 + ...+ xm−2.

pn(x) = xn (0 ≤ n ≤ m− 2)

pm−1(x) = |x|(x0 − 1)

pn(x) = |x|(pn−(m−1)(x)− pn−m(x)) (n ≥ m)



In the rest of this section, for all n ∈ N, we let αn = (αn,0, αn,1, ..., αn,m−2) be
the (real) solution to the system

pn(x) = 0, pn+1(x) = 0, . . . , pn+m−2(x) = 0

such that
0 ≤ αn,0 ≤ αn,1 ≤ · · · ≤ αn,m−2 (12)

and |αn| is maximized. Notice that αn exists for any n ∈ N since (0, 0, ..., 0) is a
solution for any n ∈ N by the definition of the pn’s. The proof of the following
theorem is similar to those of (3) and Theorem 1.

Theorem 5.

1. For all n ∈ N, the values ai (0 ≤ i < n) that define gn satisfy the following
properties.
(a) ai = pi(a).
(b) a is a solution to the system of equations

pn(x) = ρ, pn+1(x) = ρ, . . . , pn+(m−2)(x) = ρ.

(c) CR(gn) = 1 + 2|a|.
2. The strategy g0 is optimal if and only if 1 ≤ ρ ≤ m/(m − 1). In this case,

CR(g0) = 2(m− 1)ρ+ 1.

3. For all n ∈ N, pn+m−1(x) = pn(x)
∑m−2
i=0 xi −

∑n+m−2
i=0 pi(x).

4. For all n ∈ N, pn (g∞(0), g∞(1), ..., g∞(m− 2)) = g∞(n).
5. For all 0 ≤ n ≤ m− 2, αn = (0, 0, ..., 0). Moreover, αm−1 = (1, 1, ..., 1) and

αm = (m/(m− 1),m/(m− 1), ...,m/(m− 1)).

4 Conclusion

We have generalized many of our results for searching on a line to the problem
of searching on m rays for any m ≥ 2. Even though we could not extend the
analysis of the polynomials pn as far as was possible for the case where m = 2, we
believe this to be a promising direction for future research. By approaching the
problem directly instead of studying the inverse problem (maximal reach), we
were able to provide exact characterizations of gopt and CR(gopt). Moreover, the
sequence of implications in the proofs of Section 2 all depend on (4), where (4)
is an exact general expression for all roots of all equations pn. As some readers
may have observed, exact values of the roots of the equation pn are not required
to prove the results in Section 2; we need disjoint and sufficiently tight lower
and upper bounds on each of the roots of pn. In the case where m > 2, finding
a factorization similar to (4) appears highly unlikely. We believe, however, that
establishing good bounds for each of the roots of the pn should be possible.
Equipped with such bounds, the general problem could be solved exactly on
m > 2 concurrent rays. We conclude with the following conjecture. It states that
the strategy gn is uniquely defined for each n, it gives a criterion for the optimal
n in terms of ρ (and m) and gives the limit of gn when max→∞.



Conjecture 1.

1. For all n ∈ N, the system of equations of Theorem 5-1b has a unique solution
a∗ = (a∗0, a

∗
1, ..., a

∗
m−2) satisfying (12) and such that |a∗| > |αn|. Moreover,

there is a unique choice of a for gn and this choice is a = a∗.
2. For a given ρ, if pn(αn+m−1) ≤ ρ < pn(αn+m), then gn is the best strategy

and |αn+m−1| ≤ |a| < |αn+m|.
3. When max→∞, then the optimal strategy tends toward g∞.
4. For all n ∈ N, 0 ≤ |αn| ≤ |αn+1| < mm/(m − 1)m−1 with equality if and

only if 0 ≤ n ≤ m− 3.
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