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Dederichs and Weber [4] define what it means 
for a property to be a liveness property with 
respect to a safety property. They argue that 
specifications should be written in the form P n 
Q, where Q is a liveness property with respect to 
the safety property P. They also criticize Alpern 

and Schneider's general definitions of safety and 
liveness [2]: 
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Alpern and Schneider's characterizations are 
problematic, since they permit a certain kind 
of anomaly. 

The anomaly is that a liveness property, which 
should constrain only infinite behavior, can im
plicitly rule out some finite behaviors. 
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We agree that most reasonable specifications 
will be written in the form recommended by 
Dederichs and Weber. As observed by Abadi and 
Lamport [l], who called specifications having this 
form machine closed, one tries to write liveness 
properties that "[do] not rule out any finite be
havior." As pointed out by Apt, Francez, and 
Katz [3], who defined a fairness condition for a 
programming language to be feasible if it pro
duces machine-closed specifications for all pro
grams, feasibility is necessary to "prevent a 
scheduler from 'painting itself into a corner' ". 

We disagree with Dederichs and Weber's con
tention that non-machine-closed specifications 
should be avoided. We believe that it is neither 
desirable nor possible to do so. 

Abadi and Lamport's completeness result [1] 
requires that only the lower-level implementation 
be machine closed, suggesting that there is no 
need for high-level specifications to be machine 
closed. Indeed, the general specification of serial
izability given by Lamport [5] achieves its simplic
ity by not being machine closed. 

Even if one tried to forbid non-machine-closed 
specifications, they would arise in proofs that one 
specification implements another. A state-based 
proof that a lower-level specification Z imple
ments a higher-level specification X is usually 
done in two steps. One first adds history and 
prophecy variables to Z to obtain an equivalent 
specification Y [1], and then one proves Y = X, 
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where X is obtained from X by substituting 
concrete realizations for abstract variables [5]. 
Surprisingly, it turns out that each of these steps 
can destroy machine closure, so Y and X need 
not be machine closed even if Z and X are. 
Although there are alternatives to using history 
and prophecy variables, substitution of concrete 
entities for abstract ones is fundamental, and it is 
likely that non-machine-closed specifications will 
arise in any approach that handles liveness. 

As Dederichs and Weber observe, arbitrary 
liveness properties are "problematic". However, 
the problem lies in the nature of liveness, not in 
its definition. 

Once cannot avoid complexity by definition. 
Stephen Jay Gould 
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