
Information Processing Letters 40 (1991) 141-142
North-Holland

8 November 1991

Preserving liveness: Comments on "Safety
and liveness from a methodological
point of view"
Martin Abadi
Digital Equipment Corporation, Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA

Bowen Alpern
IBM, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA

Krzysztof R. Apt
Centrum voor Wzskunde en Informatica, Kruislaan 413, 1098 Sf Amsterdam, Netherlands

Nissim Francez and Shmuel Katz
Department of Computer Science, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel

Leslie Lamport
Digital Equipment Corporation, Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA

Fred B. Schneider *
Department of Computer Science, Cornell University, 4130 Upson Hall, Ithaca, NY 14853, USA

Communicated by D. Gries
Received 9 January 1991
Revised 26 June 1991 and 19 August 1991

Keywords: Distributed systems, specification methodology, safety, liveness property

Dederichs and Weber [4] define what it means
for a property to be a liveness property with
respect to a safety property. They argue that
specifications should be written in the form P n
Q, where Q is a liveness property with respect to
the safety property P. They also criticize Alpern

and Schneider's general definitions of safety and
liveness [2]:

* Supported by Office of Naval Research Contract N00014-
86-K-0092, National Science Foundation No. CCR-8701103,
and DARPA/NSF Grant No. CCR-9014363.

Alpern and Schneider's characterizations are
problematic, since they permit a certain kind
of anomaly.

The anomaly is that a liveness property, which
should constrain only infinite behavior, can im
plicitly rule out some finite behaviors.

0020-0190/91/$03.50 © 1991 - Elsevier Science Publishers B.V. All rights reserved 141

Volume 40, Number 3 INFORMATION PROCESSING LETTERS 8 November 1991

We agree that most reasonable specifications
will be written in the form recommended by
Dederichs and Weber. As observed by Abadi and
Lamport [l], who called specifications having this
form machine closed, one tries to write liveness
properties that "[do] not rule out any finite be
havior." As pointed out by Apt, Francez, and
Katz [3], who defined a fairness condition for a
programming language to be feasible if it pro
duces machine-closed specifications for all pro
grams, feasibility is necessary to "prevent a
scheduler from 'painting itself into a corner' ".

We disagree with Dederichs and Weber's con
tention that non-machine-closed specifications
should be avoided. We believe that it is neither
desirable nor possible to do so.

Abadi and Lamport's completeness result [1]
requires that only the lower-level implementation
be machine closed, suggesting that there is no
need for high-level specifications to be machine
closed. Indeed, the general specification of serial
izability given by Lamport [5] achieves its simplic
ity by not being machine closed.

Even if one tried to forbid non-machine-closed
specifications, they would arise in proofs that one
specification implements another. A state-based
proof that a lower-level specification Z imple
ments a higher-level specification X is usually
done in two steps. One first adds history and
prophecy variables to Z to obtain an equivalent
specification Y [1], and then one proves Y = X,

142

where X is obtained from X by substituting
concrete realizations for abstract variables [5].
Surprisingly, it turns out that each of these steps
can destroy machine closure, so Y and X need
not be machine closed even if Z and X are.
Although there are alternatives to using history
and prophecy variables, substitution of concrete
entities for abstract ones is fundamental, and it is
likely that non-machine-closed specifications will
arise in any approach that handles liveness.

As Dederichs and Weber observe, arbitrary
liveness properties are "problematic". However,
the problem lies in the nature of liveness, not in
its definition.

Once cannot avoid complexity by definition.
Stephen Jay Gould

References

[l] M. Abadi and L. Lamport, The existence of refinement
mappings, Theoret. Comput. Sci. 82 (2) (1991) 253-284; A
preliminary version appeared in: Proc. Third Ann. Symp.
on Logic In Computer Science (IEEE Computer Society,
Edinburgh, Scotland, 1988) 165-177.

[2] B. Alpern and F.B. Schneider, Defining liveness, Inform.
Process. Lett. 21 (4) (1985) 181-185.

[3] K.R. Apt, N. Francez and S. Katz, Appraising fairness in
languages for distributed programming, Distributed Com
put. 2 (1988) 226-241.

[4] F. Dederichs and R. Weber, Safety and liveness from a
methodological point of view, Inform. Process. Lett. 36 (I)
(1990) 25-30.

[5] L. Lamport, A simple approach to specifying concurrent
systems, Comm. A CM 32 (1) (1989) 32-45.

