369 research outputs found

    Degradable polymeric materials for osteosynthesis: Tutorial

    Get PDF
    This report summarizes the state of the art and recent developments and advances in the use of degradable polymers devices for osteosynthesis. The current generation of biodegradable polymeric implants for bone repair utilising designs copied from metal implants, originates from the concept that devices should be supportive and as “inert” substitute to bone tissue. Today degradable polymeric devices for osteosynthesis are successful in low or mild load bearing applications. However, the lack of carefully controlled randomized prospective trials that document their efficacy in treating a particular fracture pattern is still an issue. Then, the choice between degradable and non-degradable devices must be carefully weighed and depends on many factors such as the patient age and condition, the type of fracture, the risk of infection, etc. The improvement of the biodegradable devices mechanical properties and their degradation behaviour will have to be achieved to broaden their use. The next generation of biodegradable implants will probably see the implementation of the recent gained knowledge in cell-material interactions and cells therapy, with a better control of the spatial and temporal interfaces between the material and the surrounding bone tissue

    P164 Effects of reduced oxygen tension and long-term mechanical stimulation on chondrocytes-polymer constructs

    Get PDF

    Analisis Faktor Pembentuk Keputusan Pemilihan Perguruan Tinggi Swasta Universitas Telkom (Studi pada Mahasiswa Prodi S1 Administrasi Bisnis Fakultas Komunikasi dan Bisnis Universitas Telkom Angkatan 2016)

    Full text link
    In Indonesian, public university and private university compete so tightly to create qualified graduates. Beside that, they compete to provide best educational services to get more students. This study aimed to analyze dominant factors that forming student decision in choosing Telkom University study program S1 Business Administration.The type of this study is descriptive research with nonprobability sampling and simple random sampling technique. Questionnaires were distributed to 100 samples of Business Administration's students batch 2016. This research used variable such as: friends attending college, influence of parents, influence of friends, influence of other individuals, location, academic program, academic reputation, educational facilities, costs, available of financial aid, employment opportunities, advertising, HEI's representative and visit campus.Based on analysis, it was found 5 new factors such as college's image, college promotion, influence of parents, influence of friends and college's location. College's image factor has the biggest variances value such as 29,15% in forming choise decision of Telkom University Prodi S1 Business Administration as a private college

    Platelet lysate as a serum substitute for 2D static and 3D perfusion culture of stromal vascular fraction cells from human adipose tissue

    Get PDF
    Fetal bovine serum (FBS) and fibroblast growth factor (FGF)-2 are key supplements for the culture of stromal vascular fraction (SVF) cells from adipose tissue, both for typical monolayer (2D) expansion and for streamlined generation of osteogenic-vasculogenic grafts in 3D perfusion culture. The present study investigates whether factors present in human platelet lysate (PL) could substitute for FBS and FGF-2 in 2D and 3D culture models of SVF cells from human lipoaspirates. SVF cells were grown in medium supplemented with 10% FBS+FGF-2 or with 5% PL. In 2D cultures, PL initially supported SVF cell proliferation, but resulted in growth arrest shortly after the first passage. Freshly isolated SVF cells cultured with both media under perfusion for 5 days within 3D ceramic scaffolds induced bone formation after subcutaneous implantation in nude mice. However, blood vessels of donor origin were generated only using FBS+FGF-2-cultured cells. This was unexpected, because the proportion of CD34+/CD31+ endothelial lineage cells was significantly higher with PL than that of FBS+FGF-2 (33% vs. 3%, respectively). These results support the use of PL as a substitute of FBS+FGF-2 for short-term culture of human SVF cells, and indicate that more specific serum-free formulations are required to maintain a functionally vasculogenic fraction of SVF cells expanded under 3D perfusion

    Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel

    Get PDF
    Autologous chondrocyte implantation for cartilage repair represents a challenge because strongly limited by chondrocytes' poor expansion capacity in vitro. Mesenchymal stem cells (MSCs) can differentiate into chondrocytes, while mechanical loading has been proposed as alternative strategy to induce chondrogenesis excluding the use of exogenous factors. Moreover, MSC supporting material selection is fundamental to allow for an active interaction with cells. Here, we tested a novel thermo-reversible hydrogel composed of 8% w/v methylcellulose (MC) in a 0.05 M Na 2 SO 4 solution. MC hydrogel was obtained by dispersion technique and its thermo-reversibility, mechanical properties, degradation and swelling were investigated, demonstrating a solution-gelation transition between 34 and 37 °C and a low bulk degradation (<20%) after 1 month. The lack of any hydrogel-derived immunoreaction was demonstrated in vivo by mice subcutaneous implantation. To induce in vitro chondrogenesis, MSCs were seeded into MC solution retained within a porous polyurethane (PU) matrix. PU-MC composites were subjected to a combination of compression and shear forces for 21 days in a custom made bioreactor. Mechanical stimulation led to a significant increase in chondrogenic gene expression, while histological analysis detected sulphated glycosaminoglycans and collagen II only in loaded specimens, confirming MC hydrogel suitability to support load induced MSCs chondrogenesis

    Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel

    Get PDF
    Autologous chondrocyte implantation for cartilage repair represents a challenge because strongly limited by chondrocytes' poor expansion capacity in vitro. Mesenchymal stem cells (MSCs) can differentiate into chondrocytes, while mechanical loading has been proposed as alternative strategy to induce chondrogenesis excluding the use of exogenous factors. Moreover, MSC supporting material selection is fundamental to allow for an active interaction with cells. Here, we tested a novel thermo-reversible hydrogel composed of 8% w/v methylcellulose (MC) in a 0.05 M Na 2 SO 4 solution. MC hydrogel was obtained by dispersion technique and its thermo-reversibility, mechanical properties, degradation and swelling were investigated, demonstrating a solution-gelation transition between 34 and 37 °C and a low bulk degradation (<20%) after 1 month. The lack of any hydrogel-derived immunoreaction was demonstrated in vivo by mice subcutaneous implantation. To induce in vitro chondrogenesis, MSCs were seeded into MC solution retained within a porous polyurethane (PU) matrix. PU-MC composites were subjected to a combination of compression and shear forces for 21 days in a custom made bioreactor. Mechanical stimulation led to a significant increase in chondrogenic gene expression, while histological analysis detected sulphated glycosaminoglycans and collagen II only in loaded specimens, confirming MC hydrogel suitability to support load induced MSCs chondrogenesis

    Cell-seeded thermoreversible hydrogel-polyurethane composites for nucleus pulposus augmentation

    Get PDF
    Tissue engineering represents an alternative approach to the current invasive surgical procedures for the intervertebral disc (IVD) repair. The combination of injectable hydrogels and elastic biomaterials allow three-dimensional cell cultures and provide mechanical stability. In the present study a thermoreversible hyaluronan (HA) hydrogel as well as fibrin glue were mixed with polyurethane (PU) and their effect was investigated on the proliferation and differentiation of human IVD (hIVD cells) and mesenchymal stem cells (hMSCs) by in vitro and ex-vivo experiments

    Joint mimicking mechanical load activates TGFβ1 in fibrin-poly(ester-urethane) scaffolds seeded with mesenchymal stem cells

    Get PDF
    Transforming growth factor‐β1 (TGF‐β1) is widely used in an active recombinant form to stimulate the chondrogenic differentiation of mesenchymal stem cells (MSCs). Recently, it has been shown that the application of multiaxial load, that mimics the loading within diarthrodial joints, to MSCs seeded in to fibrin‐poly(ester‐urethane) scaffolds leads to the endogenous production and secretion of TGF‐β1 by the mechanically stimulated cells, which in turn drives the chondrogenic differentiation of the cells within the scaffold. The work presented in this short communication provides further evidence that the application of joint mimicking multiaxial load induces the secretion of TGF‐β1 by mechanically stimulated MSCs. The results of this work also show that joint‐like multiaxial mechanical load activates latent TGF‐β1 in response to loading in the presence or absence of cells; this activation was not seen in non‐loaded control scaffolds. Despite the application of mechanical load to scaffolds with different distributions/numbers of cells no significant differences were seen in the percentage of active TGF‐β1 quantified in the culture medium of scaffolds from different groups. The similar level of activation in scaffolds containing different numbers of cells, cells at different stages of differentiation or with different distributions of cells suggests that this activation results from the mechanical forces applied to the culture system rather than differences in cellular behaviour. These results are relevant when considering rehabilitation protocols after cell therapy or microfracture, for articular cartilage repair, where increased TGF‐β1 activation in response to joint mobilization may improve the quality of developing cartilaginous repair material

    Mechanical stress inhibits early stages of endogenous cell migration: A pilot study in an ex vivo osteocho

    Get PDF
    Cell migration has a central role in osteochondral defect repair initiation and biomaterial-mediated regeneration. New advancements to reestablish tissue function include biomaterials and factors promoting cell recruitment, differentiation and tissue integration, but little is known about responses to mechanical stimuli. In the present pilot study, we tested the influence of extrinsic forces in combination with biomaterials releasing chemoattractant signals on cell migration. We used an ex vivo mechanically stimulated osteochondral defect explant filled with fibrin/hyaluronan hydrogel, in presence or absence of platelet-derived growth factor-BB or stromal cell-derived factor 1, to assess endogenous cell recruitment into the wound site. Periodic mechanical stress at early time point negatively influenced cell infiltration compared to unloaded samples, and the implementation of chemokines to increase cell migration was not efficient to overcome this negative effect. The gene expression at 15 days of culture indicated a marked downregulation of matrix metalloproteinase (MMP)13 and MMP3, a decrease of β1 integrin and increased mRNA levels of actin in osteochondral samples exposed to complex load. This work using an ex vivo osteochondral mechanically stimulated advanced platform demonstrated that recurrent mechanical stress at early time points impeded cell migration into the hydrogel, providing a unique opportunity to improve our understanding on management of joint injury
    corecore