2,030 research outputs found

    Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review

    Get PDF
    The challenges associated with diagnosing and treating cardiovascular disease (CVD)/Stroke in Rheumatoid arthritis (RA) arise from the delayed onset of symptoms. Existing clinical risk scores are inadequate in predicting cardiac events, and conventional risk factors alone do not accurately classify many individuals at risk. Several CVD biomarkers consider the multiple pathways involved in the development of atherosclerosis, which is the primary cause of CVD/Stroke in RA. To enhance the accuracy of CVD/Stroke risk assessment in the RA framework, a proposed approach involves combining genomic-based biomarkers (GBBM) derived from plasma and/or serum samples with innovative non-invasive radiomic-based biomarkers (RBBM), such as measurements of synovial fluid, plaque area, and plaque burden. This review presents two hypotheses: (i) RBBM and GBBM biomarkers exhibit a significant correlation and can precisely detect the severity of CVD/Stroke in RA patients. (ii) Artificial Intelligence (AI)-based preventive, precision, and personalized (aiP3) CVD/Stroke risk AtheroEdgeℱ model (AtheroPointℱ, CA, USA) that utilizes deep learning (DL) to accurately classify the risk of CVD/stroke in RA framework. The authors conducted a comprehensive search using the PRISMA technique, identifying 153 studies that assessed the features/biomarkers of RBBM and GBBM for CVD/Stroke. The study demonstrates how DL models can be integrated into the AtheroEdgeℱ–aiP3 framework to determine the risk of CVD/Stroke in RA patients. The findings of this review suggest that the combination of RBBM with GBBM introduces a new dimension to the assessment of CVD/Stroke risk in the RA framework. Synovial fluid levels that are higher than normal lead to an increase in the plaque burden. Additionally, the review provides recommendations for novel, unbiased, and pruned DL algorithms that can predict CVD/Stroke risk within a RA framework that is preventive, precise, and personalized. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature

    Telecardiology Application in Jordan: Its Impact on Diagnosis and Disease Management, Patients’ Quality of Life, and Time- and Cost-Savings

    Get PDF
    Objectives. To assess the impact of live interactive telecardiology on diagnosis and disease management, patients’ quality of life, and time- and cost-savings. Methods. All consecutive patients who attended or were referred to the teleclinics for suspected cardiac problems in two hospitals in remote areas of Jordan during the study period were included in the study. Patients were interviewed for relevant information and their quality of life was assessed during the first visit and 8 weeks after the last visit. Results. A total of 76 patients were included in this study. Final diagnosis and treatment plan were established as part of the telecardiology consultations in 71.1% and 77.3% of patients, respectively. Patients’ travel was avoided for 38 (50.0%) who were managed locally. The majority of patients perceived that the visit to the telecardiology clinic results in less travel time (96.1%), less waiting time (98.1%), and lower cost (100.0%). Telecardiology consultations resulted in an improvement in the quality of life after two months of the first visit. Conclusions. Telecardiology care in remote areas of Jordan would improve the access to health care, help to reach proper diagnosis and establish the treatment plan, and improve the quality of life

    A cross sectional survey of urban Canadian family physicians' provision of minor office procedures

    Get PDF
    BACKGROUND: A discordance exists between the proportion of Canadian family physicians that we expect should be able to perform minor office procedures and the actual provision of care. This pattern has not been extensively studied. The objective of this study was to determine the current patterns and obstacles relating to the provision of four minor office procedures by GP/FPs in a small city in Ontario, Canada. An additional goal was to determine the impact of the remuneration method on the provision of such services. METHODS: A survey was mailed to all GP/FPs practising in Kingston, Ontario. The main outcomes measured in the study were work setting and remuneration method, current procedural practices with respect to four procedures, reasons for not performing procedures, current skill levels, and desire to upgrade. RESULTS: Surveys were mailed to all 108 GP/FPs in the City of Kingston. Completed surveys were collected for 82 percent (89/108) and 10 were excluded leaving 79 eligible participants. The percentages of GP/FPs who reported performing the procedure were as follows: dermatological excision (63.3%), endometrial biopsy (35.4%), shoulder injection (31.6%), and knee injection (43.0%). The majority of GP/FPs who would not do the procedure themselves would refer to a specialist colleague rather than to another GP/FP. The top reason cited for not performing a specific procedure was "lack of up to date skills" followed by "lack of time". The latter was the only statistically significant difference reported between GP/FPs working in Family Health Networks and GP/FPs working in fee for service settings (26.7% vs 47.0%, χ(2 )= 4.191 p = 0.041). CONCLUSION: A large number of Kingston, Ontario GP/FPs refer patients who require one of four minor office-based procedures for specialist consultation. Referral to other GP/FP colleagues appears underutilized. A perceived lack of up to date skills and a lack of time appear to be concerns. GP/FPs working in Family Health Networks were more likely to perform these procedures themselves. Further studies would clarify the role of changes in medical education, the role of continuing education, and the impact of different remuneration models

    DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity

    Get PDF
    Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity

    Evidence Based Prediction and Progression Monitoring on Retinal Images from Three Nations.

    Get PDF
    Purpose: The aim of this work is to demonstrate how a retinal image analysis system, DAPHNE, supports the optimization of diabetic retinopathy (DR) screening programs for grading color fundus photography. Method: Retinal image sets, graded by trained and certified human graders, were acquired from Saudi Arabia, China, and Kenya. Each image was subsequently analyzed by the DAPHNE automated software. The sensitivity, specificity, and positive and negative predictive values for the detection of referable DR or diabetic macular edema were evaluated, taking human grading or clinical assessment outcomes to be the gold standard. The automated software's ability to identify co-pathology and to correctly label DR lesions was also assessed. Results: In all three datasets the agreement between the automated software and human grading was between 0.84 to 0.88. Sensitivity did not vary significantly between populations (94.28%-97.1%) with specificity ranging between 90.33% to 92.12%. There were excellent negative predictive values above 93% in all image sets. The software was able to monitor DR progression between baseline and follow-up images with the changes visualized. No cases of proliferative DR or DME were missed in the referable recommendations. Conclusions: The DAPHNE automated software demonstrated its ability not only to grade images but also to reliably monitor and visualize progression. Therefore it has the potential to assist timely image analysis in patients with diabetes in varied populations and also help to discover subtle signs of sight-threatening disease onset. Translational Relevance: This article takes research on machine vision and evaluates its readiness for clinical use

    COVLIAS 1.0: Lung segmentation in COVID-19 computed tomography scans using hybrid deep learning artificial intelligence models

    Get PDF
    Background: COVID-19 lung segmentation using Computed Tomography (CT) scans is important for the diagnosis of lung severity. The process of automated lung segmentation is challenging due to (a) CT radiation dosage and (b) ground-glass opacities caused by COVID-19. The lung segmentation methodologies proposed in 2020 were semi-or automated but not reliable, accurate, and user-friendly. The proposed study presents a COVID Lung Image Analysis System (COVLIAS 1.0, AtheroPointℱ, Roseville, CA, USA) consisting of hybrid deep learning (HDL) models for lung segmentation. Methodology: The COVLIAS 1.0 consists of three methods based on solo deep learning (SDL) or hybrid deep learning (HDL). SegNet is proposed in the SDL category while VGG-SegNet and ResNet-SegNet are designed under the HDL paradigm. The three proposed AI approaches were benchmarked against the National Institute of Health (NIH)-based conventional segmentation model using fuzzy-connectedness. A cross-validation protocol with a 40:60 ratio between training and testing was designed, with 10% validation data. The ground truth (GT) was manually traced by a radiologist trained personnel. For performance evaluation, nine different criteria were selected to perform the evaluation of SDL or HDL lung segmentation regions and lungs long axis against GT. Results: Using the database of 5000 chest CT images (from 72 patients), COVLIAS 1.0 yielded AUC of ~0.96, ~0.97, ~0.98, and ~0.96 (p-value < 0.001), respectively within 5% range of GT area, for SegNet, VGG-SegNet, ResNet-SegNet, and NIH. The mean Figure of Merit using four models (left and right lung) was above 94%. On benchmarking against the National Institute of Health (NIH) segmentation method, the proposed model demonstrated a 58% and 44% improvement in ResNet-SegNet, 52% and 36% improvement in VGG-SegNet for lung area, and lung long axis, respectively. The PE statistics performance was in the following order: ResNet-SegNet > VGG-SegNet > NIH > SegNet. The HDL runs in <1 s on test data per image. Conclusions: The COVLIAS 1.0 system can be applied in real-time for radiology-based clinical settings

    Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report

    Get PDF
    The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate

    Deep Learning Paradigm for Cardiovascular Disease/Stroke Risk Stratification in Parkinson’s Disease Affected by COVID‐19: A Narrative Review

    Get PDF
    Background and Motivation: Parkinson’s disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID‐19 causes the ML systems to be-come severely non‐linear and poses challenges in cardiovascular/stroke risk stratification. Further, due to comorbidity, sample size constraints, and poor scientific and clinical validation techniques, there have been no well‐explained ML paradigms. Deep neural networks are powerful learning machines that generalize non‐linear conditions. This study presents a novel investigation of deep learning (DL) solutions for CVD/stroke risk prediction in PD patients affected by the COVID‐19 framework. Method: The PRISMA search strategy was used for the selection of 292 studies closely associated with the effect of PD on CVD risk in the COVID‐19 framework. We study the hypothesis that PD in the presence of COVID‐19 can cause more harm to the heart and brain than in non‐ COVID‐19 conditions. COVID‐19 lung damage severity can be used as a covariate during DL training model designs. We, therefore, propose a DL model for the estimation of, (i) COVID‐19 lesions in computed tomography (CT) scans and (ii) combining the covariates of PD, COVID‐19 lesions, office and laboratory arterial atherosclerotic image‐based biomarkers, and medicine usage for the PD patients for the design of DL point‐based models for CVD/stroke risk stratification. Results: We validated the feasibility of CVD/stroke risk stratification in PD patients in the presence of a COVID‐ 19 environment and this was also verified. DL architectures like long short‐term memory (LSTM), and recurrent neural network (RNN) were studied for CVD/stroke risk stratification showing powerful designs. Lastly, we examined the artificial intelligence bias and provided recommendations for early detection of CVD/stroke in PD patients in the presence of COVID‐19. Conclusion: The DL is a very powerful tool for predicting CVD/stroke risk in PD patients affected by COVID‐19
    • 

    corecore