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Purpose: The aim of this work is to demonstrate how a retinal image analysis system,
DAPHNE, supports the optimization of diabetic retinopathy (DR) screening programs
for grading color fundus photography.

Method: Retinal image sets, graded by trained and certified human graders, were
acquired from Saudi Arabia, China, and Kenya. Each image was subsequently analyzed
by the DAPHNE automated software. The sensitivity, specificity, and positive and
negative predictive values for the detection of referable DR or diabetic macular edema
were evaluated, taking human grading or clinical assessment outcomes to be the gold
standard. The automated software’s ability to identify co-pathology and to correctly
label DR lesions was also assessed.

Results: In all three datasets the agreement between the automated software and
human grading was between 0.84 to 0.88. Sensitivity did not vary significantly between
populations (94.28%–97.1%) with specificity ranging between 90.33% to 92.12%. There
were excellent negative predictive values above 93% in all image sets. The software
was able to monitor DR progression between baseline and follow-up images with the
changes visualized. No cases of proliferative DR or DME were missed in the referable
recommendations.

Conclusions: The DAPHNE automated software demonstrated its ability not only to
grade images but also to reliably monitor and visualize progression. Therefore it has the
potential to assist timely image analysis in patients with diabetes in varied populations
and also help to discover subtle signs of sight-threatening disease onset.

Translational Relevance: This article takes research on machine vision and evaluates
its readiness for clinical use.

Introduction

Diabetic retinopathy (DR) is a common compli-
cation of diabetes mellitus. Among patients with
diabetes, DR prevalence is approximately 28.5% in the

United States,1 34.08% in China,2 and 34.6% in Saudi
Arabia.3 The diagnosis of DR early in the presymp-
tomatic phase through screening is critical to the
eventual visual outcome and relies on a detailed analy-
sis of fundus photographs taken regularly (e.g., often
annually) within DR screening programs. At present,
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photographs are most commonly analyzed by ophthal-
mologists, optometrists, and professional graders.

Several classification systems have been developed
and adopted to guide DR screening frequency and
ophthalmic referral based on a population’s needs
or the resources available in different parts of the
world. Two commonly used systems are the Inter-
national Clinical Diabetic Retinopathy and Diabetic
Macular Oedema Severity Scale (ICDRS) and the one
defined by the UK National Screening Committee
(NSC).4,5 Guidance on screening intervals, investiga-
tion, and treatment are also incorporated into these
guidelines.6–8

In England and Wales, where more than 80% of
those with diabetes undergo DR screening at least
annually, DR is no longer the leading cause of blind-
ness in the working-age population.7 However, the
majority of countries around the world have no such
established screening program; one of the barriers
remains the need to have sufficient trained staff to
manually grade every fundus image captured. The
availability of automated image grading might become
a facilitator to support DR screening services in
resource limited settings.

Over the past two decades, automated retinal image
analysis for DR detection and grading has been studied
extensively. Computer vision and machine learning
methods have been proposed.9–12 The rise of deep
learning,13,14 typically implemented as convolutional
neural networks (CNNs),15–22 has given a significant
boost to the field of automated DR detection. This
facilitated the usage of large datasets of fundus images
to improve the accuracy and scalability of DR recogni-
tion and classification.13,14

However, such systems continue to suffer from
significant limitations:

• The inability of many deep learning systems to
provide detail or evidence to support their “black-
box”DR classification;
• Absence of the capacity to detect and grade
DR within the broader context of other possi-
ble diagnoses such as age-related macular degen-
eration (AMD) and retinal vein occlusion, to
minimize false-positive results and indicate the
presence of non-DR pathologies.

Hypothesis of the Study

This study aims to evaluate the ability of a retinal
image analysis software system to provide effective
detection of referable DR and surrogate markers
of diabetic macular edema (DME) and monitor
the progression of DR and DME based on either

the ICDRS or NSC grading criteria. The measure
of its performance is based on its agreement with
human graders and clinical assessment. Validations
were carried out on external testing data collected
from three geographic locations, Kenya, Saudi Arabia,
and China, with different camera types and settings.
The software also provides evidence of its predic-
tion through visualizing relevant lesions and identi-
fies the presence of copathology while not confusing it
with DR.

Methods

DAPHNE Automated Software

DAPHNE is an automated system for retinal image
analysis developed by the University of Surrey, UK.
DAPHNE was originally developed as a software
system for diabetic retinopathy filtering of normal
images.23 Over the years it has evolved with the
addition of a range of components with the aim of
supporting a holistic reading of retinal images on key
pathologic manifestations of DR and other disorders.
Two major components are evaluated in this work;
one is an image-based classifier, the other is an object
detector.

The DAPHNE classifier is an end to end CNN
architecture with multiple output layers for different
classifications based on the training samples annotated
on their quality, as well as DR grade in either ICDRS
or NSC (see below, in the Retinal Images Datasets
section of this article). Images were first prepro-
cessed to subtract local average color to reduce differ-
ences in lighting.24 These were then augmented to
increase spatial, rotational, and scale variance. To
speed up the “learning” process, batch normaliza-
tion and pre-initialization were used. Pre-initialization
also improved performance of the CNN network.
The CNN framework was trained to provide multi-
ple outputs, including (1) quality assessment; (2)
ICDRS DR grades (e.g., 0—no DR, 1—mild, 2—
moderate, 3—severe, or 4—proliferative); (3) UKNSC
DR grades (e.g., R0—no DR, R1—background, R2—
preproliferative, orR3—proliferative); and (4) presence
of referable DR.

The DAPHNE object detector has a number of
components. A set of U-net25 and CNN-based detec-
tors were trained to detect retinal anatomic structures,
such as the optic disc and macula; the DR lesions,
such as microaneurysms, hemorrhages, exudates,
and other lesions, such as intraretinal microvascular
abnormality (IRMA), new vessel on disc, new vessel
elsewhere, cotton wool, drusen, and venous beading.
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The rest of this section will first describe the predic-
tionworkflow after the algorithms are trained, followed
by further information on training and validation
datasets, prediction output categories as well as how
the prediction accuracy is reported.

DAPHNEWorkflow
In the first stage of the processing, raw data in

any image format are cropped by removing any black
mask borders around the retina region then passed
through the classifier network to obtain a prediction
on both quality and DR scales. To minimize the throw-
ing away of those low readability images caused by the
presence of certain pathologies, the probability outputs
on both quality measure and disease measures are fed
into a logistic regression model parametrized by some
samples of images with pure quality issues and those
with conditions such as cataract and retinal detach-
ment. This filtering process does not intend to achieve
100% accuracy but aims to pick up some portion of
the low quality images caused by different pathological
conditions, if any, so they could be processed further.
Otherwise those images with low quality scores are
marked as ungradable. All the images that are deemed
to have a quality score indicating adequate quality, are
passed to the next stage.

In the second stage, DAPHNE detectors output
the locations of anatomical structures in the fundus
image, as well as the likelihood that a certain region
is pathologic. This works together with the DAPHNE
classifier that outputs the DR severity grading. The
detected pathological regions that are consistent with
the predicted grading level are visualized as evidence
for the predicted grade. With regard to DME analy-
sis, the DAPHNE detector detects and visualizes the
location of the optic disc, fovea, and any exudate
around themacula region, as well as any appearance of
microaneurysms or hemorrhages within 1-disc diame-
ter of the fovea.

Analysis for Progression
DR is a progressive disease, and UK26 data suggest

that it may be possible to stratify patients for risk,
using grading outcomes only, into groups with low and
high risk of progressing to proliferative DR. Subse-
quently, screening intervals for such diverse groups of
patients could then safely be modified according to
their risk stratification. In our work the DR progres-
sion monitoring was carried out by combining the
results from individual image classification on disease
level and then adding in the DAPHNE detectors to
visualize the changes between time-points.

When analyzing a set of images taken forDR screen-
ing of the same patients at different examination time

points, the system first applies detected anatomical
structures to register between baseline and follow-up
images of the same eye. It then computes any change
in the severity of DR by comparing the grading results
of these images. After registration, the lesion detectors
are used to extract and visualize the following morpho-
logic changes in pathology (see Fig. 1):

• Any new lesion;
• Any disappearing lesion;
• Any change of existing lesions (smaller or bigger
compared with baseline images).

Retinal Image Datasets

Training Sets
The development of the DAPHNE classifier was

undertaken partly using 35,124macula-centered retinal
fundus images generated by EyePACS and available
at Kaggle.17 These images were already labeled by
EyePACS using the ICDRS scheme.We also annotated
these images using the NSC grading scheme and used
28,100 of them as part of our training and testing
dataset. The remaining 20% (7024 images) served
as an internal validation test set. Cameras used to
capture the images include the Optovue iCam, Center-
vue DRS, Topcon NW and Canon CR1/DGi/CR2
using 45° fields-of-view. As with any typical real-
world dataset, this dataset included photographs that
contained artefacts or could be out of focus, under-
exposed or overexposed. Another 4980 images were
selected from our own collections, from different
cameras and ethnic groups, with the annotations in
both ICDRS and NSC agreed by three trained graders.
Together these form 33,800 training sample images for
learning each grading standard (ICDRS and NSC).

For lesion detection in the DAPHNE detector, we
first used a public database (DiaRetDB1).19 All images
were obtained using the same 50° field-of-view fundus
camera with varying imaging settings. It contains 89
digital retinal images and a human-expert annotated
ground truth for several commonDR lesions, including
microaneurysms, hemorrhages and exudates. We then
added a further 1952 images annotated by three trained
graders and amedical retina specialist on retinal patho-
logic regions. After random sampling and prepro-
cessing, 50,000 sub-images in smaller patch sizes are
sampled from 2041 (89 + 1952) images for training.
These subimages include those regions with or without
pixels where the lesions are located to form negative
and positive samples. For negative samples, normal
patches on various locations of the retina without any
pathology can be used. There are many possibilities to
sample such subimages with the lesions appearing at
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Figure 1. Top row: images from the same eye taken on October 26, 2015 (baseline), November 3, 2015 (dot hemorrhage), and March 8,
2016 (MA, hemorrhage and preretinal hemorrhage). Bottom row: the comparison ofmorphological changes for DR signs between a baseline
image (October 26, 2015) and a follow-up retinal image (March 8, 2016).

different positions of the patch for positive samples.
Positive samples include those features appearing in
DR, as well as those non-DR but pathological. Fifty
thousand patch samples allowed the algorithm to be
trained under different scenarios.

As a general strategy, during the training, all the
training data were divided randomly into training and
testing sets on the basis of an 80/20 split strategy. These
data were not used for any internal or external valida-
tion. There was no patient-level overlap in the training

and testing sets in either the internal or external valida-
tion.

External Validation Test Sets
To test the generalizability and reproducibility of

the software, we used three distinct datasets for external
validation acquired with varying imaging settings and
cameras from the three countries: 15,000 from China,
10,026 from Saudi Arabia, and 24,700 from Kenya.18



Prediction and Progression Monitoring of DR TVST | Special Issue | Vol. 9 | No. 2 | Article 44 | 5

Table 1. An Overview of the Training and Internal and External Validation Test Sets

0 1 2 3 4

ICDRS
Training samples on DAPHNE classifier using
28,100 from Kaggle

20647 1955 4234 698 566

Internal validation (7024 from Kaggle) 5161 488 1058 175 142
External validation datasets
Kenya 11479 9463 3395 329 34
NSC R0 R1 R2 R3 —
Additional training samples on DAPHNE
classifier (only its distribution in NSC is shown
for simplicity)

3659 346 750 224 —

External validation datasets
NSC R0 R1 R2 R3 —
China 9986 3279 1240 495 —
Saudi Arabia 7451 1854 582 139 —

0, no DR; 1, mild; 2, moderate; 3, severe; 4, proliferative; R0, no DR; R1; background; R2, preproliferative; R3, proliferative.

China. Images were obtained fromDR screening, fully
anonymized locally and with appropriate permissions
in place. The gold-standard for DR grading using the
NSC grading criteria was carried out by trained and
certified graders. Two fundus images were taken in
each eye; one optic disc centered and the other macula
centered. No follow up images or clinical assessments
were received.

Saudi Arabia. Images were collected at an Eye Clinic
after appropriate approvals were put in place. Zeiss
Visucam 500 cameras were used once eyes were dilated
using pharmacological dilation. As this was a clinic
based population, most patients had eye conditions
but not necessarily DR. Multiple fundus images were
acquired from the same patients with varied examina-
tion intervals between image capture (ranging from one
month to one year). The ground truth on images was
extracted based on clinical assessment and converted
to DR grades using NSC grading including features of
DME being noted.

Kenya. Data were from a population-based survey
undertaken in 2007 to 2008 in Nakuru district, Kenya,
as the baseline using a Topcon NW6S Non Mydriatic
camera model (Topcon, Tokyo, Japan), then in 2013 to
2014 as follow-up in the same population using a DRS
Digital Fundus Camera (Haag-Streit, Köniz, Switzer-
land).18 Two 45° fundus photographs were taken in
each eye; one optic disc centered and the other macula
centered. The gold-standard for DR grading of DR
was carried out using ICDRS grading criteria. In
addition, age related macular degeneration (AMD)
and optic disc changes based on retinal photographs

were completed by trained graders at the Moorfields
Eye Hospital Reading Centre, London, UK. This was
the most complex image and grading set of the 3 but
also the one with the most complete grading.

A public database, Messidor-220,21 was also
included in the external validation, consisting of 874
subjects with diabetes (1748 digital retinal color images,
one fovea-centered image per eye). These subjects were
imaged, without pharmacological dilation, using a
Topcon TRC NW6 non-mydriatic fundus camera with
a 45-degree field of view, centered on the fovea, at
varying imaging settings. Two categories of disease
have been provided by the medical experts for each
image; the ICDR scales and a definition of DME
risk based on the distance between macula and hard
exudates. Table 1 provides an overview of the training,
internal and external validation test sets.

The Grading Categories and Definitions

Different countries adopt different grading schemes
depending on their healthcare resources and policies.
TheDAPHNE software is trained to predict the proba-
bilities of the following categories:

• Image quality (gradable or non-gradable): The
quality grading standard is based on using the
UK National Screening Programme for Diabetic
Retinopathy’s guidelines for the definition of
acceptable quality.27
• Diabetic retinopathy severity: The DAPHNE
classifier grades images based on either ICDRS
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or UK NSC classification schemes; whichever is
suitable for the country’s needs.
• A modified definition of DME (0–1): Fundus
photography does not reliably identify DME but
allows for surrogate markers to be identified. These
surrogate markers of edema such as presence
of exudates, or microaneurysms within one-disc
diameter of the macula,19 are identified by the
DAPHNE software as well. According to the
UK NSC guidelines, diabetic maculopathy (M1) is
defined as follows: “A group of exudates is an area
of exudates that is greater than or equal to half
the disc area and this area is all within the macular
area,” whereas the macula is defined as “that part
of the retina which lies within a circle centered on
the center of the fovea whose radius is the distance
between the center of the fovea and the tempo-
ral margin of the disc.”28 The detection of DME
markers is carried out by the DAPHNE object
detector and subsequently classified as a referable
disease.
• Non-referable DR versus referable DR: In ICDRS
level 0 or 1 and in UKNSCR0 or R1 are nonrefer-
able DR, whilst ICDRS level 2, 3, 4 and UK NSC
R2 or R3 are Referable DR.

Statistical Analysis of Performance

Evaluation was conducted by measuring sensitiv-
ity (SN), specificity (SP), positive and negative predic-
tive values (PPV and NPV), and their 95% confi-
dence intervals (CIs). We also calculated the agree-
ment of the DR and DME grading results between
the DAPHNE system and human experts by using
the quadratic weighted kappa. These analyses were
measured through the StatsModels version 0.8.0 and
SciPy version 1.0.0 python packages.

Results

The DAPHNE system is being evaluated in its
intended stage in the care pathway: reading of referable
cases with evidence, noting any progression changes.

On External Validation Datasets

This dataset was graded as 95% gradable by our
system. Referable DR prevalence was 42.5% (21,133
images). According to the NSC and ICDRS grading
standards, DAPHNE classifies data into referral (R2
and above in NSC or moderate DR and above in
ICDRS) and nonreferral cases (R0/R1 in NSC or no

apparent retinopathy and Mild NPDR in ICDRS).
Because there is no overlapping in images graded in
NSC and ICDRS,we report here the combined calcula-
tion on referable retinopathy. Any image with detected
DME markers is also referable.

The kappa scores tomeasure the agreement between
the ground truth and the software on referable diseases
in China, Saudi Arabia and Kenya datasets are as
follows: 0.85, 0.88, and 0.84, respectively. The perfor-
mance of DAPHNE with regard to the detection
of referable retinopathy at high sensitivity operat-
ing points was as follows: sensitivity, 94.1% (95%
CI: 92.3%–95.6%); specificity, 87.0% (95% CI: 84.9%–
88.9%); negative predictive value, 93.9% (95% CI:
93.9%–96.3%); and positive predictive value, 85.3%
(95% CI: 82.1%–86.1%). At high-specificity operat-
ing points, the sensitivity of our system was 88.2%
(95% CI: 85.9%–90.3%), specificity was 93.0% (95%
CI: 91.4%–94.5%), the negative predictive value was
91.5% (95%CI: 89.9%–92.8%), and the positive predic-
tive value was 90.4% (95% CI: 88.3%–92.1%). Tables
2A through 2C show the detail of the software perfor-
mance on each of these three populations.

We chose 3548 eyes with baseline and follow-up
images. The measure of changes on their disease
levels were calculated. The kappa score is 0.827
when comparing those changes assessed by human
graders. Figures 2 and 3 show the detected DR
signs across baseline and follow-up images using the
DAPHNE lesion detector.

We also carried out an evaluation based on the
consistency between the detected features by the
software and the DR severity level for the whole image
annotated by human graders. If the software detects
sufficient features that can be mapped to the same level
of DR severity graded by human graders, it is consid-
ered as an agreement. The DAPHNE system achieved
aweighted kappa score of 0.87 on these external valida-
tion sets. The software, however, detected some of the
other non-DR lesions and individual artefacts as DR
related. This showed that further work is still needed
to refine the detection. On the other hand, this will aid
flaging up any non-DR pathology.

On External Public Dataset Messidor-2

This consisted of 1748 retinal images from 874
subjects. This dataset was assessed as 100% gradable by
our system. Two hundred sixty-four images are Refer-
able DR and 125 DME. Table 2D shows the perfor-
mance of the algorithm for detecting the different levels
of diabetic retinopathy.

At the high sensitivity operating point of detecting
referable DR levels (according to ICDR scales and
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Table 2A. DAPHNE’s Performance on External Validations: (a) Sensitivity, Specificity and Corresponding 95% CIs
for Referral Level Output to Detect Referral, PDR and DME, and PDR Level Output to Detect PDR on the Kenya
Dataset

Disease Level Daphne Predicted Results Sensitivity Specificity

Referral vs Non- Referral Referral 94.28% (93.1%–95.22%) 92.12% (88.27%–93.33%)
PDR 100% (95.5%–100%) —
DME —

PDR vs Non-PDR PDR 97.35% (92.3%–99.7%) 85.78% (83.2%–87.81%)

Table 2B. DAPHNE’s Performance on External Validations: Sensitivity, Specificity and Corresponding 95% CIs for
Referral Level Output to Detect Referral, PDR and DME, and PDR Level Output to Detect PDR on the Saudi Arabian
Dataset

Disease Level Daphne Predicted Results Sensitivity Specificity

Referral vs. Non- Referral Referral 97.1% (95.1%–97.25%) 90.33% (85.71%–92.17%)
PDR 100% (94.5%–100%) —
DME 100% (94.5%–100%) —

PDR vs. Non-PDR PDR 98.23% (93.3%–99.6%) 83.78% (82.12%–88.87%)

The ground truth of DME was obtained from eye clinic, to assess the detection of DMEmarkers by the DAPHNE detector.

Table 2C. DAPHNE’s Performance on External Validations: Sensitivity, Specificity and Corresponding 95% CIs for
Referral Level Output to Detect Referral, PDR and DME, and PDR Level Output to Detect PDR on the China Dataset

Disease Level Daphne Predicted Results Sensitivity Specificity

Referral vs. Non- Referral Referral 95.51% (93.1%–97.50%) 91.11% (85.11%–92.63%)
PDR 100% (95.8%–100%) —
DME —

PDR vs. Non-PDR PDR 97.18% (91.2%–99.6%) 87.77% (85.3%–88.80%)

Table 2D. DAPHNE’s Performance on External Validations: Sensitivity, Specificity and Corresponding 95% CIs for
Referral Level Output to Detect Referral, PDR and DME, and PDR Level Output to Detect PDR on the Messidor-2
Dataset

Disease Level Daphne Predicted Results Sensitivity Specificity

Referral vs. Nonreferral Referral 95.8% (94%–97.42%) 91.32% (86.7%–93.53%)
PDR 100% (96.5%–100%) —
DME 100% (95.8%–100%) —

PDR vs. Non-PDR PDR 98.55% (91.3%–99.6%) 86.78% (84.2%–88.8%)

DME scales), the sensitivity of our system was 97.1%
(95% CI: 94.8%–98.6%) and specificity was 88.3%
(95% CI: 86.5%–90.0%), with a negative predictive
value of 99.1% (95% CI: 98.5%–99.5%), and positive
predictive value of 69.8% (95% CI: 66.6%–72.8%). At
the high specificity operating point, the sensitivity of
our system was 89.2% (95% CI: 85.7%–92.2%), and
specificity was 95.6% (95% CI: 94.4%–96.6%), with a

negative predictive value of 97.0% (95% CI: 96.0%–
97.7%) and a positive predictive value of 85.0% (95%
CI: 81.5%–87.9%).

Sensitivity, based on referral level prediction when
proliferative diabetic retinopathy (PDR) cases are in
the referable category, was 100% (95% CI: 96.5%–
100%, which means no cases of PDR cases were
missed), and sensitivity for detecting DME was also
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Figure 2. The detected results of DR progression changes over a five-year period: First and second rows: from normal images (R0) to
background retinopathy (R1); last row: from preproliferative retinopathy (R2) to stable treated proliferative retinopathy (R3s). First column:
baseline images; second column: follow-up fundus images.

100% using the referral threshold (95% CI: 95.8%–
100%; i.e., no cases of DME were missed). The AUC
for detecting the referral DR was 0.983 (95% CI:
0.969%–0.993%). On the other hand, if a threshold is
set to separate PDR and non-PDR, there were cases
of PDR classified as severe DR but in the referable
category as shown in Table 2.

On Internal Validation Dataset

As a part of the internal validation on 7024
images from the Kaggle dataset, two operating points
were selected for the detection of referable DR levels
(according to the ICDR scales) for fully gradable
images; one for high sensitivity and another for high
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Figure 3. The detected results of DR progression changes within one month (between images columns 1 and 2) and two to four months
(between images in columns 2 and 3). Each row shows images from one patient.

specificity. At the high sensitivity operating point, the
sensitivity of our system was 94.2% (95% CI: 93.7%–
94.7%), and specificity was 76.5% (95% CI: 76.1%–
76.9%), a negative predictive value of 98.2% (95% CI:
98.1%–98.4%), and positive predictive value of 48.7%
(95%CI: 48.2%–49.1%). At the high-specificity operat-
ing point, the sensitivity of our system was 80.1%
(95%CI: 80.0%–81.5%) and specificity was 92.6% (95%
CI: 92.4%–92.9%), with a negative predictive value of
95.3% (95% CI: 95.1%–95.5%) and positive predic-
tive value of 72.1% (95% CI: 71.4%–72.8%). The AUC
for detected referable DR level was 0.985 (95% CI:
0.969%–0.993%). For grading against the ICDR scales,
our proposed system obtained a quadratic weighted

kappa score of 0.857, which is slightly lower than the
winner of the DR competition but higher than other
published methods.

Evidence-based Visualization

The current DAPHNE lesion detectors can visual-
ize lesions such as MAs, hemorrhage, exudate, drusen,
IRMA, and new vessels explicitly when the predic-
tion probability confidence of these is high. A general
category of “abnormal region” is used in the visual-
ization when explicit labeling of the region is of low
probability but high as abnormal. Once the CNN
outputs any grade indicating the image is not normal
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(not 0 in ICDRS or not R0 in NSC), the lesion detec-
tors will visualize at least one of the above pathologic
regions that are within the definition of the particular
grade. On the other hand, if CNN grades an image as
normal, the lesion detectors will search for any missed
lesion/abnormal regions using higher prediction proba-
bility values.

Discussion

This study demonstrates that all components for
the DAPHNE software, such as image quality assess-
ment, image grading, lesion detection, and visualiza-
tion performed well. These results show good gener-
alizability of the DAPHNE software results to detect
gradable quality images, the relevant abnormalities to
identify referable DR and DME and to visualize the
relevant changes that happened over time. The study
was carried out on large sets of images captured from
a diverse population with varying camera types and
settings. Therefore we believe that so far the evalu-
ation of the DAPHNE software showed sufficiently
promising results for it to be useful in the intended
stage in the DR screening and imaging analysis care
pathway.

In many DR screening programs, human graders
do not have access to any other information on the
patient but the fundus images they read. Therefore
the way the algorithm learns and generates the results
needs to mimic the ground truth based on how human
graders read the images and come to the conclusion
of referral being required. Our purpose was to deter-
mine whether the algorithm can learn to perform at
an acceptable level of reading fundus images to safely
determine quality of the images and then subsequently
place patients in the correct referral pathway.

Gradeability of the images can determine the
quality of the program and so first of all, DAPHNE
looked into any significant impact on software perfor-
mance when images are from different cameras, with
either dilated, or undilated eyes. Testing the data
collected from three nations with variation of these
factors showed that, as long as the quality assess-
ment is in place in the workflow, the performance of
the algorithm is consistent. This is in line with other
studies,29,30 where AI was evaluated in coordination
with either assessing the quality and protocol adher-
ence of images, or data imaged with mydriasis through
a high-quality imaging platform.

Moreover, an effective algorithm should learn about
the true pattern across a large set of images, even
if there may be a certain level of noise or variation

in some individual samples. Because the DAPHNE
software’s agreement with human grading was above
84% in all validation datasets, it shows potential for
further testing with regard to how it might be incorpo-
rated into clinical practice. The software is very sensi-
tive to sight-threatening disease. DAPHNE copes well
across different datasets with a varying proportion of
normal versus abnormal cases.

When patients do not haveDR orDMEbut do have
another pathology, the lesion detectors in DAPHNE
are able to recognize them as having abnormal regions.
DAPHNE thus has the ability to identify the existence
of many common ocular comorbidities in eyes without
diabetic retinopathy. The software, however, still needs
to be refined to differentiate DR from other visually
similar diseases or images with abnormal regions.

The software also shows an ability to monitor
DR progression changes between baseline and follow-
up images. Because the changes of condition can
be measured quantitatively, this progression monitor-
ing may potentially benefit patient care management.
Furthermore, it might potentially assist with decision
making for optimal screening intervals for patients with
diabetes in varied populations.

This automated interpretation addresses only one
of the several challenges involved in implementing
a successful screening program. This work, however,
is not trying to redesign any screening program but
rather just to focus on how an automated software
system may assist the analysis of the images produced
within a functioning screening program. Further work
is required to understand a holistic interaction and
integration of an AI software into clinical workflows
within a given health care system.31
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