547 research outputs found

    Content-Centric Networking at Internet Scale through The Integration of Name Resolution and Routing

    Full text link
    We introduce CCN-RAMP (Routing to Anchors Matching Prefixes), a new approach to content-centric networking. CCN-RAMP offers all the advantages of the Named Data Networking (NDN) and Content-Centric Networking (CCNx) but eliminates the need to either use Pending Interest Tables (PIT) or lookup large Forwarding Information Bases (FIB) listing name prefixes in order to forward Interests. CCN-RAMP uses small forwarding tables listing anonymous sources of Interests and the locations of name prefixes. Such tables are immune to Interest-flooding attacks and are smaller than the FIBs used to list IP address ranges in the Internet. We show that no forwarding loops can occur with CCN-RAMP, and that Interests flow over the same routes that NDN and CCNx would maintain using large FIBs. The results of simulation experiments comparing NDN with CCN-RAMP based on ndnSIM show that CCN-RAMP requires forwarding state that is orders of magnitude smaller than what NDN requires, and attains even better performance

    Limit theorems for weakly subcritical branching processes in random environment

    Full text link
    For a branching process in random environment it is assumed that the offspring distribution of the individuals varies in a random fashion, independently from one generation to the other. Interestingly there is the possibility that the process may at the same time be subcritical and, conditioned on nonextinction, 'supercritical'. This so-called weakly subcritical case is considered in this paper. We study the asymptotic survival probability and the size of the population conditioned on non-extinction. Also a functional limit theorem is proven, which makes the conditional supercriticality manifest. A main tool is a new type of functional limit theorems for conditional random walks.Comment: 35 page

    Study of the physical properties of crystalline rocks in the southeast Voronezh anteclise

    Get PDF
    The physical properties of rocks, in the crystalline mass of the Voronezh anteclise, were studied. The study of the physical properties of rocks is important for the improvement of geophysical methods for mapping crystalline rocks in the foundation and exploration of different geological objects which are associated with the crystalline foundation, covered by the sedimentary mantle. It is found that: (1) rocks in the crystalline foundation are very different in physical properties; (2) the physical properties are closely related to their substance composition and genesis; (3) petrographic properties give clues of rock afficiation to certain complexes; and (4) physical and magnetic properties should be examined by petrography, chemical and X-ray analysis

    Nonlinear slow magnetoacoustic waves in coronal plasma structures

    Get PDF
    Context. There is abundant observational evidence of longitudinal waves in the plasma structures of the solar corona. These essentially compressive waves are confidently interpreted as slow magnetoacoustic waves. The use of the slow waves in plasma diagnostics and estimating their possible contribution to plasma heating and acceleration require detailed theoretical modelling. Aims. We investigate the role of obliqueness and magnetic effects in the evolution of slow magnetoacoustic waves, also called tube waves, in field-aligned plasma structures. Special attention is paid to the wave damping caused by nonlinear steepening. Methods. We considered an untwisted straight axisymmetric field-aligned plasma cylinder and analysed the behaviour of the slow magnetoacoustic waves that are guided by this plasma structure. We adopted a thin flux tube approximation. We took into account dissipation caused by viscosity, resistivity and thermal conduction, and nonlinearity. Effects of stratification and dispersion caused by the finite radius of the flux tube were neglected. Results. We derive the Burgers-type evolutionary equation for tube waves in a uniform plasma cylinder. Compared with a plane acoustic wave, the formation of shock fronts in tube waves is found to occur at a larger distance from the source. In addition, tube waves experience stronger damping. These effects are most pronounced in plasmas with the parameter β at about or greater than unity. In a low-β plasma, the evolution of tube waves can satisfactorily be described with the Burgers equation for plane acoustic waves

    Cut-off period for slow magnetoacoustic waves in coronal plasma structures

    Get PDF
    Context. There is abundant observational evidence of longitudinal compressive waves in plasma structures of the solar corona, which are confidently interpreted in terms of slow magnetoacoustic waves. The uses of coronal slow waves in plasma diagnostics, as well as analysis of their possible contribution to coronal heating and the solar wind acceleration, require detailed theoretical modelling. Aims. We investigate the effects of obliqueness, magnetic field, and non-uniformity of the medium on the evolution of long-wavelength slow magnetoacoustic waves guided by field-aligned plasma non-uniformities, also called tube waves. Special attention is paid to the cut-off effect due to the gravity stratification of the coronal plasma. Methods. We study the behaviour of linear tube waves in a vertical untwisted straight field-aligned isothermal plasma cylinder. We apply the thin flux tube approximation, taking into account effects of stratification caused by gravity. The dispersion due to the finite radius of the flux tube is neglected. We analyse the behaviour of the cut-off period for an exponentially divergent magnetic flux tube filled in with a stratified plasma. The results obtained are compared with the known cases of the constant Alfven speed and the pure acoustic wave. Results. We derive the wave equation for tube waves and reduce it to the form of the Klein–Gordon equation with varying coefficients, which explicitly contains the cut-off frequency. The cut-off period is found to vary with height, decreasing significantly in the low-beta plasma and in the plasma with the beta of the order of unity. The depressions in the cut-off period profiles can affect the propagation of longitudinal waves along coronal plasma structures towards the higher corona and can form coronal resonators

    Covert Ephemeral Communication in Named Data Networking

    Full text link
    In the last decade, there has been a growing realization that the current Internet Protocol is reaching the limits of its senescence. This has prompted several research efforts that aim to design potential next-generation Internet architectures. Named Data Networking (NDN), an instantiation of the content-centric approach to networking, is one such effort. In contrast with IP, NDN routers maintain a significant amount of user-driven state. In this paper we investigate how to use this state for covert ephemeral communication (CEC). CEC allows two or more parties to covertly exchange ephemeral messages, i.e., messages that become unavailable after a certain amount of time. Our techniques rely only on network-layer, rather than application-layer, services. This makes our protocols robust, and communication difficult to uncover. We show that users can build high-bandwidth CECs exploiting features unique to NDN: in-network caches, routers' forwarding state and name matching rules. We assess feasibility and performance of proposed cover channels using a local setup and the official NDN testbed

    The multilevel trigger system of the DIRAC experiment

    Get PDF
    The multilevel trigger system of the DIRAC experiment at CERN is presented. It includes a fast first level trigger as well as various trigger processors to select events with a pair of pions having a low relative momentum typical of the physical process under study. One of these processors employs the drift chamber data, another one is based on a neural network algorithm and the others use various hit-map detector correlations. Two versions of the trigger system used at different stages of the experiment are described. The complete system reduces the event rate by a factor of 1000, with efficiency \geq95% of detecting the events in the relative momentum range of interest.Comment: 21 pages, 11 figure

    Niels Bohr’s principle of complementarities in political economy

    Get PDF
    The development of the principle of complementarity by a well-known Danish physical scientist N. Bohr was the outstanding achievement of philosophical idea, having prime value to explain quantum mechanics phenomena and biological and social (including economic) phenomena sufficiently differing from them. This principle focuses the attention of the researchers on revelation of dualistic, dialectically contradictory essence of the phenomenon studied. Such task cannot be solved using some single category whatever significant and universal it is. Three categories shall be used for this. One for designation of a basic phenomenon per se, two others to describe additional properties, revealing dualistic, dialectically contradictory essence of the phenomenon studied. Such approach allows developing the required theoretic and methodological tools to study dualistic, contradictory nature of economic phenomena and processes as a two-pole model of the economic phenomenon (ABC model), embodying the principle of complementarity in political economy. This model may be used as a tool for critical analysis of conceptual framework of economics and development of scientific novelty. The article shows that theoretic interpretation of many economic phenomena has stood the test from ABC model position, some of them could not overcome such a test. These are, for example: nominal salary, labour productivity, marketing and advertising. Analysis using ABC model revealed that their widespread theoretical interpretations ignore the essential characteristics of these phenomena. The principle of complementarity which fixed inherent dualistic dialectically contradictory structure as the required step of cognition of nature and society phenomena essence plays the most important methodological role in the analysis of economic phenomena.peer-reviewe

    Dynamics of the Pionium with the Density Matrix Formalism

    Full text link
    The evolution of pionium, the π+π\pi^+ \pi^- hydrogen-like atom, while passing through matter is solved within the density matrix formalism in the first Born approximation. We compare the influence on the pionium break-up probability between the standard probabilistic calculations and the more precise picture of the density matrix formalism accounting for interference effects. We focus our general result in the particular conditions of the DIRAC experiment at CERN.Comment: 14 pages, 2 figures, submitted to J. Phys. B: At. Mol. Phy
    corecore